A Sequence of Linear Polynomial Operators and Their Approximation-Theoretic Properties*

T. S. MOTZKIN[†]

University of California, Los Angeles 90024

AND

A. SHARMA

University of Alberta, Edmonton, Alberta, Canada Received October 26, 1970

DEDICATED TO PROFESSOR J. L. WALSH ON THE OCCASION OF HIS 75TH BIRTHDAY

0. Introduction

Let

$$E_n = \{x_1^{(n)}, \dots, x_n^{(n)}\}, \quad -1 \leqslant x_1^{(n)} < \dots < x_n^{(n)} \leqslant 1,$$

denote the *n*-th row of a triangular matrix E and let f(x) be defined in [-1, 1]. The polynomial $L_n(f, E_n) \equiv L_{n0}(f; x)$ of degree n-1 interpolating f on E_n has been, since Newton and Lagrange, the subject of many investigations. It is a well-known result [9, p. 5] of Faber and Bernstein that

(1) for every matrix E, there exists a continuous function f(x) on [-1, 1] for which the sequence $\{L_{n0}(f; x)\}$ does not converge uniformly.

However, Fejér [6] has shown that

(2) if the Lebesgue constant $\lambda_n(E) < cn^{\beta}$, $0 < \beta < 1$, then the polynomials $L_{n0}(f; x)$ converge to f(x), uniformly in [-1, 1], if $f \in \text{Lip } \gamma$, $\gamma > \beta$.

^{*} Presented in part to the American Mathematical Society on January 25, 1970 (*Notices Amer. Math. Soc.* 17 (1970), 257), and at the Conference on Constructive Function Theory, Varna, Bulgaria, 1970.

[†] Deceased.

On the other hand, Erdös and Turán [5] have shown that

(3) if the points of E_n are the zeros of a polynomial Q_n of degree n, where $\{Q_n\}$ is an orthogonal sequence with respect to a weight function $w(x) \ge M > 0$, $-1 \le x \le 1$, then $\{L_{n0}(f; x)\}$ converges in the mean square to f(x), even when f(x) is only R-integrable.

Later Erdös and Feldheim [4] pointed out that

(4) for the zeros of the Tchebycheff polynomial of the first kind an even stronger result holds:

$$\lim_{n\to\infty}\int_{-1}^{1}|L_{n0}(f;x)-f(x)|^{p}(1-x^{2})^{-1/2}dx=0, \quad p=1,2,...$$

while for the zeros of the Tchebycheff polynomials $U_n(x)$ of the second kind $(U_n(x) = \sin(n+1)\theta/\sin\theta, x = \cos\theta)$ there exists a continuous function f(x) for which $\int_{-1}^{1} (L_{n0}(f; x) - f(x))^2 dx$ approaches infinity as n increases.

For other related results see Feldheim [8]. More recently Askey [1] has shown that if E_n consists of the zeros of $Q_n^{(x+1/2)}(x)$, the ultraspherical polynomial, $\alpha \ge -1/2$, then for every continuous f

$$\lim_{n\to\infty} \int_{-1}^{1} |L_{n0}(f;x) - f(x)|^{p} (1-x^{2})^{\alpha} dx = 0$$
 (0.1)

if $p < 4(\alpha + 1)/(2\alpha + 1)$, while if $p \ge 4(\alpha + 1)/(2\alpha + 1)$ there exists a continuous function f(x) for which (0.1) fails. In the complex domain, Walsh and Sharma [16] proved

(5) the mean square convergence of $L_{n0}(f; z)$ to f(x) on the unit circle, when E_n consists of the *n*-th roots of unity and f(x) is analytic in |z| < 1 and continuous in $|z| \le 1$.

The object of this paper is to give a scheme for defining a linear polynomial operator $L_{nr}(f;x)$ for any given integer r, $0 \le r \le n-1$, which reduces for r=0 to the Lagrange interpolation polynomial and which for r=1 gives the so-called next-to-interpolatory polynomial (cf. Motzkin and Sharma [10]). We show that for fixed r, these polynomials share many of the convergence properties of the Lagrange polynomials including statements (1)–(5). We first develop (in Section 1) a general matrix-theoretic rank-diminishing procedure, a special case of which yields the polynomial operators L_{nr} .

1. Preliminaries on Matrices

- 1.1. In Section 1, we denote matrices by italic capitals, square matrices by greek capitals, the rank of A by A, the transpose by A^T , rows by b or b'; j means a row consisting of zeros and one 1, as well as the position number of that 1; correspondingly we use c and k for columns. Then jA, Ak, jAk are a row, a column and an element of A; $A \setminus Ak$ means A with Ak deleted.
- 1.2. If the columns of A depend on some of their linear combinations: $A = AC \cdot D$, then the columns of BA depend on the corresponding linear combinations: $BA = BAC \cdot D$. But if, for some column c of C, BAc = 0 then the columns of BA depend already on $BA(C \setminus c)$.
- 1.3. If $Ac \neq 0$, BAc = 0 then $(BA) \cdot \langle A \cdot$. One proof uses 1.2 and the fact that there exists C with $A \cdot$ columns one of which is c such that $(AC) \cdot = A \cdot$.
- 1.4. Lemma. If $\Gamma = bAc Acb$ then (1) $\Gamma Ac = 0$, (2) $(\Gamma A) \cdot < A \cdot$ if $A \neq 0$, (3) $b\Gamma = 0$, (4) b'A = 0 implies $b'\Gamma A = 0$, (5) $\Gamma A = A\Delta$ where $\Delta = bAc cbA$.
- *Proof.* (1) follows from $j\Gamma Ac = bAc \cdot jAc jAcbAc = 0$. (2) follows from (1) and 1.3 if $Ac \neq 0$; if Ac = 0 then $\Gamma = 0$, $\Gamma A = 0$. We have (3) by $b\Gamma = bAc \cdot b bAcb$, (4) by $b'\Gamma A = bAc \cdot b'A b'AcbA$, (5) by $bAc \cdot A = A \cdot bAc$, where bAc denotes two scalar matrices of possibly different sizes. (In general, $\phi = \lambda AF$, $\psi = \lambda FA$, with scalar λ , implies $\phi A = A\psi$.) Note that for $bAc \neq 0$, $\Gamma' = \Gamma/bAc = 1 Acb/bAc$ and $\Delta' = \Delta/bAc$ have the same properties.
- 1.5. By assertion (2) of the lemma a general rank diminishing algorithm can be defined as follows. Choose b and c and replace A by

$$\Gamma A = A\Delta = bAc \cdot A - AcbA$$
.

Now choose new b and c and continue. Then 0 is reached after at most A steps. But, by (3) and (4), if any b is used again at the next or some later step, 0 is reached at that step. By (5), the same holds for the reuse of c.

The variant $\Gamma'A$ has the same properties but halts when bAc = 0.

1.6. If the columns of 1 are consecutively chosen as c, then by (1) of the lemma, the first columns in the resulting matrices in turn become and stay 0 and may as well be omitted. This amounts to replacing, at each step, A by $A(\Delta \setminus \Delta k)$ or $A(\Delta' \setminus \Delta' k)$, where k is the first column of 1. We have:

If the columns of A are independent, so are those of

$$A(\Delta' \setminus \Delta' k), \qquad \Delta' = 1 - kbA/bAk.$$

Proof. Independence of the columns of A can be written BA = 1. Denoting the first row of 1 by j there follows $(B \setminus jB) A(\Delta' \setminus \Delta' k) = (1 \setminus j)(\Delta' \setminus \Delta' k) = 1$.

As the number of columns of A decreases, B loses its first rows.

1.7. For a real A, choose c = k as in 1.6 and b such that $jb^T = \operatorname{sgn} jAk$ for all j; here $\operatorname{sgn} 0$ is arbitrary subject to $-1 \leq \operatorname{sgn} 0 \leq 1$. In this case, if one starts with an invertible A, at the first step the signs of the highest order determinants are the same as those for the remaining rows of A^{-1} .

2. THE POLYNOMIAL ALGORITHM

To the matrix A in Section 1 there correspond the polynomials $A\xi$; $\xi = (..., x^2, x, 1)^T$ and for given distinct $x_1, x_2, ...$, the polynomial operator

$$fA = (f(x_1), f(x_2),...) A,$$

which assigns to every function f the polynomial $fA\xi$. In particular, for A defined by

$$j\Lambda\xi=\prod_{i\neq j}\frac{x-x_i}{x_i-x_i},$$

 $fA\xi$ is the interpolating polynomial to f; A^{-1} is the Vandermondian of x_1 , x_2 ,.... In fact if we denote by s_m the m-th elementary symmetric function in the n variables x_1 , x_2 ,..., x_n :

$$s_m = s_m(x_1, ..., x_n) = \sum x_{\nu_1} x_{\nu_2} \cdots x_{\nu_m}, \quad 1 \le m \le n, \quad s_0 = 1 \quad (2.1)$$

and by $s_m^{(v)}$ the *m*-th elementary symmetric function in the n-1 variables with x_v missing; i.e.,

$$s_m^{(\nu)} = s_m(x_1, ..., x_{\nu-1}, x_{\nu+1}, ..., x_n), \tag{2.2}$$

then we have $\Lambda = (\lambda_{ik})$, where

$$\lambda_{jk} = (-1)^{k-1} \left[s_{n-k}^{(j)} / \prod_{\nu \neq j} (x_{\nu} - x_{j}) \right].$$

Let $E = \{z_1, ..., z_n\}$ be a set of n (distinct) points in the complex plane and let $l_{j_0}(z)$ (j = 1, ..., n) be the fundamental polynomials of degree n - 1 of Lagrange interpolation defined by

$$l_{j0}(z_k) = \delta_{jk}, \quad j = 1,...,n.$$
 (2.3)

The Lagrange interpolation operator $fA \equiv L_{n0}(f; z)$ is then given by

$$L_{n0}(f;z) = \sum_{1}^{n} f_{i} l_{i0}$$
, where $f_{i} = f(z_{i})$. (2.4)

If we set

$$\omega(z) = \prod_{1}^{n} (z - z_{j}), \qquad \omega_{j} = (\omega'(z_{j}))^{-1} = \prod_{k \neq j} (z_{j} - z_{k})^{-1} \neq 0,$$

then

$$l_{j0}(z) = \omega_j \frac{\omega(z)}{z - z_j} = \omega_j (z^{n-1} - s_1^{(j)} z^{n-2} + s_2^{(j)} z^{n-3} - \cdots)$$
 (2.5)

where $s_m^{(j)}$ is given by (2.2). Denote by l_{j0}^* the coefficient of z^{n-1} in l_{j0} ; then $l_{j0}^* = \omega_j \neq 0$. If $w_1, ..., w_n$ are given positive numbers, set

$$\lambda_0(z) = \sum_{1}^{n} w_j^{-1} l_{j0}(z) / \text{sgn } l_{j0}^* = \sum_{1}^{n-1} (-1)^k \sum_{1}^{n} w_j^{-1} | \omega_j | s_k^{(j)} z^{n-k-1}.$$
 (2.6)

Then the coefficient of z^{n-1} in $\lambda_0(z)$ is given by

$$\lambda_0^* = \sum_{1}^n |l_{j_0}^*| w_j^{-1}. \tag{2.7}$$

If we now form the polynomials $l_{i1}(z)$ of degree n-2 given by

$$l_{j1}(z) = l_{j0}(z) - (l_{j0}^*/\lambda_0^*) \lambda_0(z), \quad j = 1,...,n,$$
 (2.8)

then we can define the polynomial operator $L_{n1}(f; z)$ as follows:

$$L_{n1}(f;z) = \sum_{1}^{n} f_{j} l_{j1}(z).$$
 (2.9)

This process of determining the polynomials l_{j1} from the polynomials l_{j0} can be iterated r times. For simplicity, from here on let $w_1 = \cdots = w_n = 1$. If r is a fixed integer, $1 \le r \le n-1$, suppose we have already formed the polynomials $\{l_{j,r-1}\}_1^n$ of degree n-r. If $l_{j,r-1}^*$ and λ_{r-1}^* denote the coefficient of z^{n-r} in $l_{j,r-1}$ and λ_{r-1} , we set

$$l_{jr}(z) = l_{j,r-1}(z) - (l_{j,r-1}^*/\lambda_{r-1}^*) \lambda_{r-1}(z),$$
 (2.10)

$$\lambda_{r-1}(z) = \sum_{j \in I_1} l_{j,r-1} (\operatorname{sgn} l_{j,r-1}^*)^{-1} + \sum_{j \in I_2} \epsilon_j l_{j,r-1}, \qquad |\epsilon_j| = 1, \quad (2.11)$$

where $I_1 = \{j \mid I_{j,r-1}^* \neq 0\}$ and $I_2 = \{j \mid I_{j,r-1}^* = 0\}$. The linear polynomial operator

$$L_{nr}(f;z) = \sum_{1}^{n} f_{j} l_{jr}$$
 (2.12)

maps functions into polynomials of degree $\leq n-r-1$. The possible

presence of arbitrary ϵ_j 's, $|\epsilon_j| = 1$, brings in an indeterminacy in the algorithm (2.10) which we discuss in some detail in Section 3. However, we still have

LEMMA 1. The linear operators $L_{nr}(f;z)$ given by (2.1) are projection operators onto the space of polynomials of degree $\leq n-r-1$. Also

$$\sum_{1}^{n} l_{jr}^{*} z_{j}^{m} = 0, \qquad m = 0, 1, ..., n - r - 2,$$

$$= 1, \qquad m = n - r - 1.$$
(2.13)

In particular, we have

$$\sum_{1}^{n} I_{j,n-1}^{*} = 1. (2.14)$$

Proof. For r = 0, the lemma is well known as a reproducing property of Lagrange interpolation which is exact for polynomials of degree $\leq n - 1$. This gives (2.13) for r = 0. The proof is now completed by induction on r, using (2.13) and (2.10).

The above lemma is independent of the arbitrary ϵ_j 's, $|\epsilon_j| = 1$, which occurs in l_{kr} when $l_{j,r-1}^*$ vanishes. Formula (2.13) guarantees that the $l_{j,r-1}^*$ (j = 0, 1, ..., n - 1) can not all vanish. We now obtain an upper bound on $|L_{nr}(f;z)|$ independent of all ϵ_j 's that may occur in (2.12). We have

LEMMA 2. If $\max_i |f_i| = M$, then for any given $r, 1 \le r \le n-1$, we have

$$|L_{nr}(f;z)| \leq 2^r M \sum_{1}^{n} |l_{k0}(z)|.$$
 (2.15)

Proof. Denote by I_{r-1} the set of indices for which $I_{j,r-1}^* \neq 0$ and by J_{r-1} the complementary set. Then using (2.10) we have

$$\begin{split} \lambda_{r-1}^* L_{n_l}(f;z) &= \sum_{1}^n f_i(l_{i,r-1}\lambda_{r-1}^* - l_{i,r-1}^* \lambda_{r-1}) \\ &= \sum_{i=1}^n f_i \left\{ l_{i,r-1} \sum_{j \in I_{r-1}} |l_{j,r-1}^*| - l_{i,r-1}^* \sum_{j \in I_{r-1}} l_{j,r-1} (\operatorname{sgn} l_{j,r-1}^*)^{-1} \right. \\ &- l_{i,r-1}^* \sum_{j \in J_{r-1}} \epsilon_j l_{j,r-1} \right\} \\ &= \sum_{j \in I_{r-1}} l_{j,r-1} \alpha_{j,1}(f) + \sum_{j \in I_{r-1}} l_{j,r-1} \beta_{j,1}(f), \end{split}$$

where

$$\alpha_{j,1}(f) = \sum_{i \in I_{r-1}} l_{i,r-1}^* \{ f_i (\operatorname{sgn} l_{i,r-1}^*)^{-1} - f_i (\operatorname{sgn} l_{j,r-1}^*)^{-1} \}, \quad j \in I_{r-1},$$

$$\beta_{j,1}(f) = \sum_{i \in I_{r-1}} l_{i,r-1}^* \{ f_i (\operatorname{sgn} l_{i,r-1}^*)^{-1} - f_i \epsilon_j \}, \quad j \in J_{r-1}.$$
(2.16)

Then

$$\max\{\mid \alpha_{j,1}(f)\mid,\mid \beta_{j,1}(f)\mid\}\leqslant 2M\sum_{k\in I_{r-1}}\mid I_{k,r-1}^{*}\mid = 2M\lambda_{r-1}^{*}.$$

If $I_{r-2} = \{i \mid l_{i,r-2}^* \neq 0\}$, $J_{r-2} = \{j \mid l_{j,r-2}^* = 0\}$ and if $f^{(1)}$ denotes a function such that

$$f_{j}^{(1)} \equiv f^{(1)}(z_{j}) = \alpha_{j,1}(f), \quad j \in I_{r-1},$$

= $\beta_{j,1}(f), \quad j \in J_{r-1},$

then it is easy to see that

$$\lambda_{r-1}^* \lambda_{r-2}^* L_{nr}(f;z) = \sum_{j \in I_{r-2}} l_{j,r-2} \alpha_{j,2}(f^{(1)}) + \sum_{j \in J_{r-2}} l_{j,r-2} \beta_{j,2}(f^{(1)}),$$

where $\alpha_{j,2}(f^{(1)})$, $\beta_{j,2}(f^{(1)})$ are defined in a way analogous to (2.16). Also

$$\max(|\alpha_{j,2}(f^{(1)}), |\beta_{j,2}(f^{(1)})|) \leq 2^2 M \lambda_{r-1}^* \lambda_{r-2}^*$$
.

Repeating the above process r times, we finally have

$$\prod_{0}^{r-1} \lambda_{k} * L_{nr}(f; z) = \sum_{1}^{n} \alpha_{k,r} l_{k0}$$
 (2.17)

where $|\alpha_{k,r}| \leq 2^r M(\prod_0^{r-1} \lambda_k^*)$. Taking absolute values in (2.17) completes the proof.

3. Special Sets E and Indeterminacy

In general, it is very difficult to compute the numbers $l_{j,r-1}^*$ and λ_{r-1}^* . For special E, it might also happen that for some r and j, $l_{j,r-1}^* = 0$ but from (2.13) it is clear that $l_{j,r-1}^*$ can not vanish for all j and hence λ_{r-1}^* can never be zero. However, as explained in Section 2, the vanishing of $l_{j,r-1}^*$ brings in an indeterminacy in the linear operators.

If l_{k0}^{**} , λ_0^{**} denote the coefficient of z^{n-2} in l_{k0} and λ_0 , respectively, then $l_{k1}^{*}=0$ is equivalent to $\lambda_0^{*}l_{k0}^{**}=\lambda_0^{**}l_{k0}^{*}$, namely, to $\lambda_0^{*}(x_k-\sum x_j)=\lambda_0^{**}$, i.e., $x_k=(\lambda_0^{**}/\lambda_0^{*})+\sum x_j$. Hence only one l_{k1}^{*} can vanish (also for any given positive weights w_j).

With all $w_j = 1$ in (2.7) and (2.8), the condition $l_{k1}^* = 0$ becomes

$$\sum_{j=1}^{n} (z_k - z_j) u_j = 0, \qquad u_j = 1 / \prod_{i \neq j} |z_i - z_j|, \qquad (3.1)$$

whence $z_k = \sum z_i u_i / \sum u_i$. As an average, z_k is in the relative interior of the convex hull of the z_i .

If $z_1 = 0$ and if for some $\epsilon \neq 1$, $|\epsilon| = 1$, $z_j \in E$ entails $z_j \epsilon \in E$, then by symmetry $\sum z_j u_j = 0$, hence $l_{11}^* = 0$.

When E has only 3 or 4 points, we have the following

THEOREM 1. If n = 3, $l_{11}^* = 0$ if and only if z_1 lies between z_2 and z_3 . For n = 4, $l_{11}^* = 0$ if and only if z_1 is the orthocenter of the acute-angled triangle (z_2, z_3, z_4) .

Proof. For n=3, the result follows from (3.1) which reduces to $sgn(z_1-z_2)+sgn(z_1-z_3)=0$.

For n = 4, (3.1) becomes

$$|z_3 - z_4| \operatorname{sgn}(z_1 - z_2) + |z_4 - z_2| \operatorname{sgn}(z_1 - z_3) + |z_2 - z_3| \operatorname{sgn}(z_1 - z_4) = 0.$$
(3.2)

Equation (3.2) means that 3 vectors of lengths $|z_2 - z_3|$, $|z_3 - z_4|$, $|z_4 - z_2|$, form a triangle. But the lengths of the sides of a triangle determine the angles except for factors ± 1 . Hence but for a rotation there are only two possible positions:

$$|z_2 - z_3| \operatorname{sgn}(z_2 - z_3) + |z_3 - z_4| \operatorname{sgn}(z_3 - z_4) + |z_4 - z_2| \operatorname{sgn}(z_4 - z_2) = 0$$
(3.3)

or

$$\frac{|z_2 - z_3|}{\operatorname{sgn}(z_2 - z_3)} + \frac{|z_3 - z_4|}{\operatorname{sgn}(z_3 - z_4)} + \frac{|z_4 - z_2|}{\operatorname{sgn}(z_4 - z_2)} = 0.$$
 (3.4)

From these we see that $sgn(z_1 - z_4)$, $sgn(z_1 - z_2)$, $sgn(z_1 - z_3)$ differ from $sgn(z_2 - z_3)$, $sgn(z_3 - z_4)$, $sgn(z_4 - z_2)$ or their reciprocals only by a constant rotation factor. Therefore we have either

$$\frac{\operatorname{sgn}(z_1 - z_4)}{\operatorname{sgn}(z_2 - z_3)} = \frac{\operatorname{sgn}(z_1 - z_2)}{\operatorname{sgn}(z_3 - z_4)} = \frac{\operatorname{sgn}(z_1 - z_3)}{\operatorname{sgn}(z_4 - z_2)}$$
(3.5)

or

$$sgn(z_1 - z_4) sgn(z_2 - z_3) = sgn(z_1 - z_2) sgn(z_3 - z_4)$$

$$= sgn(z_1 - z_3) sgn(z_4 - z_2).$$
(3.6)

Now (3.6) can not hold; for if it did then the three vectors $(z_1 - z_4)(z_2 - z_3)$, $(z_1 - z_2)(z_3 - z_4)$, $(z_1 - z_3)(z_4 - z_2)$ would have the same argument which is impossible since their sum is zero, and z_1 , z_2 , z_3 , z_4 are distinct.

If z_2 , z_3 , z_4 are colinear and (3.5) holds, then (3.6) also holds. Hence z_2 , z_3 , z_4 are not colinear.

In case (3.5) holds, even if we allow, instead of equality, equality with \pm factor, i.e.,

$$\frac{\operatorname{sgn}(z_1 - z_4)}{\operatorname{sgn}(z_2 - z_3)} = \pm \frac{\operatorname{sgn}(z_1 - z_2)}{\operatorname{sgn}(z_3 - z_4)} = \pm \frac{\operatorname{sgn}(z_1 - z_3)}{\operatorname{sgn}(z_4 - z_2)},$$
 (3.7)

it means that if we take lines through z_3 , z_4 , z_2 parallel to the lines $\overline{z_4z_2}$, $\overline{z_2z_3}$, $\overline{z_3z_4}$, respectively, and turn them about the same angle, then they should be concurrent at z_1 . Now the point of intersection of any two of these lines while they are turning moves on a circle which is of the same size as the circumcircle of the triangle (z_2, z_3, z_4) . These three circles meet at the orthocenter because the angle at the orthocenter and that at the vertex are supplementary. Thus the orthocenter is the only point z_1 fulfilling (3.7). But it is easy to see that (3.5) will be fulfilled if and only if z_1 is in the interior of the triangle (z_2, z_3, z_4) . This completes the proof of the theorem for n = 4.

Remark 1. If n=4 and the points $x_1>x_2>x_3>x_4$ are real then the numbers $\operatorname{sgn} l_{1k}^*$, $\operatorname{sgn} l_{2k}^*$, $\operatorname{sgn} l_{3k}^*$, $\operatorname{sgn} l_{4k}^*$ are 1, -1, 1, -1 for k=0; 1, -1, -1, 1 for k=1; and 1, 1, -1, -1 for k=2.

Remark 2. The set of all sequences $(z_1, ..., z_n)$ for which $l_{11}^* = 0$ has dimension 5 for n = 3, but probably 2n - 2 for n > 3. To prove it is $\ge 2n - 2$, let $z_1 = 0$, $z_j = \epsilon^{j-1}$ ($\epsilon^{n-1} = 1$), j > 1. Then an arbitrary small variation of the z_j , j > 1, entails (if we want $l_{11}^* = 0$) a small variation of z_1 (for each j the Jacobian is $\ne 0$, so that the inverse function theorem can be applied).

We give now a second proof of the fact that the dimension mentioned above is $\ge 2n-2$ for n>3. From (3.1) we see that $l_{11}^*=0$ if and only if

$$0 = \left[\operatorname{sgn}(z_2 - z_1) / \prod_{j \neq 1, 2} |z_2 - z_j| \right] + \cdots.$$

Hence if $z_2, ..., z_n$ are real, $z_2 < \cdots < z_n$, and $y_k = 1/\prod_{j \neq k, j \neq 1} |z_k - z_j|$, then $l_{11}^* = 0$ will hold if and only if $z_k < z_1 < z_{k+1}$ where

$$y_2 + \dots + y_k = y_{k+1} + \dots + y_n$$
 (3.8)

Since for n > 3, $y_3 > y_2$, $y_{n-1} > y_n$, we have $3 \le k \le n-2$. For n=3 we get $z_2 < z_1 < z_3$; for n=4 nonexistence of z_1 ; for $n \ge 5$, z_1 exists only for special positions of $z_2, ..., z_n$ (e.g., symmetry for odd n), and then z_1 can be chosen on an interval. For $n \ge 5$, any $k, 3 \le k \le n-2$, can occur;

indeed, for small $z_3 - z_2$ the left member is larger in the equation that is obtained from (3.8) by multiplying by the least common denominator, while for small $z_n - z_{n-1}$ the right member is larger, hence by continuity they can be equal. For n = 5, we have k = 3 and the condition (3.8) reduces to $z_3 - z_2 = z_5 - z_4$, i.e., symmetry.

To find a root of $F(z_1)=0$ for general complex $z_2,...,z_n$, where $F(z_1)=\sum_{i=1}^n y_k \operatorname{sgn}(z_k-z_1)$, note that for a fixed large $|z_1|$, $F(z_1)$ stays close to a circle about 0. If we contract the $|z_1|$ -circle the image must at sometime pass through 0 unless 0 lies within, or on, one of the circles $F(z_k)$ with $\operatorname{sgn} 0$ arbitrary of absolute value 1. (Note that for k=2,...,n, $F(z_k)=A_k+y_ke^{i\theta}$, $-\pi<\theta\leqslant\pi$, with $A_k=\sum_{\nu=2,\nu\neq k}^n y_\nu \operatorname{sgn}(z_\nu-z_k)$, is a circle with centre A_k and radius y_k). For example, for n=4 this occurs (as seen by a simple computation) if and only if the triangle (z_2,z_3,z_4) has an angle ϕ , $\pi/2\leqslant\phi\leqslant\pi$ at z_k . For $z_k=\epsilon^{k-1}$ ($\epsilon^{n-1}=1$), 0 does not lie in, or on, these circles; for if, for instance, $0=y_2\alpha+\sum_{k>2}y_k\operatorname{sgn}(1-\epsilon^{k-2})$, $|\alpha|\leqslant 1$, then (since all y_k are equal)

$$\alpha = -\sum_{1}^{n-2} \operatorname{sgn}(1 - \epsilon^{k}) = -\cot \pi/(2n-2) < -1, \quad n > 3.$$

Hence $F(z_1) = 0$ for some z_1 ; in fact, for $z_1 = 0$. For an arbitrary small change of the z_k , the circles still do not include 0, hence $F(z_1) = 0$ still has a root, which proves that the above-mentioned dimension is $\ge 2n - 2$.

4. Next-to-interpolatory Polynomials

Let Π_k denote the class of polynomials of degree $\leq k$, let $\tau(z)$ denote the next-to-interpolatory polynomial of degree n-2 which minimizes the norm $\max_i \{w_i \mid f_i - t(z_i)\}$ among all polynomials of degree $\leq n-2$, where the w_i 's are given positive constants. We now prove

THEOREM 2. The polynomials $L_{n1}(f; z)$ of (2.9) coincide with the next-to-interpolatory polynomials $\tau(z)$. Moreover if f is not a polynomial of degree $\leq n-2$, then the following statements are equivalent:

$$L_{n1}(f;z) = \tau(z) = fA\Delta'(1 \setminus k) \tag{4.1}$$

(in the notation of Sections 1 and 2), where $k = (1, 0, 0,...)^T$ and b is given by $b_j^T = w_j^{-1} (\operatorname{sgn} j \Lambda k)^{-1}$.

$$w_i | f_i - L_{n1}(f; z_i)| = |B_0|/\lambda_0^*,$$
 is independent of i ,
 $\arg \frac{f_i - L_{n1}(f; z_i)}{B_0} = \arg \omega'(z_i),$ is independent of f ; (4.2)

$$L_{n1}(f;z) = \frac{1}{\lambda_0^*} \sum_{1}^{n} w_k^{-1} \Lambda_k(f;z) | l_{k_0}^* |, \qquad (4.3)$$

where $\Lambda_k(f;z)$ is the polynomial interpolating f in all points of E except z_k ; and $B_0 = \sum_{1}^{n} f_i l_{i0}^* \neq 0$.

Proof. We begin with the explicit formula for $\tau(z)$ given by Motzkin and Walsh [11]. They show that

$$B_0^{-1}\{L_{n0}(f;z)-\tau(z)\}=\omega(z)\sum_{i=1}^n\frac{\mu_i}{z-z_i}, \qquad \mu_i=w_i^{-1}\frac{I_{i0}^*}{\lambda_0^*}$$

Hence

$$\tau(z) = \sum_{1}^{n} f_{i} l_{i0} - B_{0} \omega(z) \sum_{1}^{n} \frac{\mu_{i}}{z - z_{i}}$$

$$= \sum_{1}^{n} f_{i} l_{i0} - \frac{\lambda_{0}(z)}{\lambda_{0}^{*}} \sum_{1}^{n} f_{i} l_{i0}^{*}$$

$$= \sum_{1}^{n} f_{i} l_{i1}(z),$$

which proves the first part of (4.1). The second part is a reformulation of (2.9) in the notation of Section 1.

Equation (4.2) is a rewording of the equations which characterize $\tau(z)$ [11, p. 84]; corresponding results are given there for general families and weights. The second part of (4.2) can also be rewritten as

$$\arg\left\{\frac{f_i - L_{n1}(f; z_i)}{\omega'(z_i)}\right\} = \arg B_0$$
 is independent of *i*.

In this form the result (4.2) is equivalent to the conditions of Videnskii [3, 14]. In order to prove (4.3) we observe that from [10, Theorem 2] it follows (after a change of notation) that

$$\tau(z) = \frac{1}{\lambda_0^*} \sum_{1}^{n} w_k^{-1} \Lambda_k(f) | I_{k_0}^* |,$$

$$\Lambda_k(f) = \sum_{1}^{n} f_j \lambda_{j,k}, \qquad \lambda_{j,k} = \prod_{h \neq j,k} \frac{z - z_h}{z_j - z_h}.$$
(4.4)

We shall show that $\tau(z)$ given by (4.4) and $L_{n1}(f;z)$ given by (2.9) and (2.8) are equal. Now (4.4) implies that

$$\tau(z) = \sum_{k=1}^{n} w_{k}^{-1} | l_{k0}^{*} | \sum_{j=1}^{n} f_{j} \lambda_{j,k} / \sum_{k=1}^{n} w_{k}^{-1} | l_{k0}^{*} |$$

$$= \sum_{j=1}^{n} f_{j} \sum_{k=1}^{n} w_{k}^{-1} | l_{k0}^{*} | \lambda_{j,k} / \sum_{k=1}^{n} w_{k}^{-1} | l_{k0}^{*} |.$$

It is therefore enough to show that $\lambda_0^* l_{j_0} - l_{j_0}^* \lambda_0 = \sum_1^n w_k^{-1} |l_{k0}^*| \lambda_{l,k}$ or equivalently that

$$\sum_{k=1}^{n} w_{k}^{-1}(l_{j_{0}} - \lambda_{j,k}) \mid l_{k_{0}}^{*} \mid = l_{j_{0}}^{*} \sum_{1}^{n} w_{k}^{-1} l_{k_{0}} / (\operatorname{sgn} l_{k_{0}}^{*})$$
(4.5)

since $\lambda_0^* = \sum_{1}^n w_k^{-1} | l_{k0}^* |$. We shall indeed show that

$$(l_{j0} - \lambda_{j,k}) l_{k0}^* = l_{j0}^* l_{k0}$$
 (4.6)

which implies (4.5). Now it is easy to see that

$$\lambda_{j,k} = ((z_j - z_k)/(z - z_k)) l_{j0}$$

so that $l_{i0} - \lambda_{i,k} = ((z-z_i)/(z-z_k)) l_{i0}$. Since $l_{i0} = l_{i0}^* \omega(z)/(z-z_i)$ and $l_{k0} = l_{k0}^* \omega(z)/(z-z_k)$, we have proved (4.6). This completes the proof of Theorem 2.

5. MEAN SQUARE CONVERGENCE FOR ROOTS OF UNITY

Let $E = \{1, \alpha, ..., \alpha^{n-1}\}$ be the *n* roots of unity with $\alpha^n = 1$. Then $l_{j0} = (z^n - 1)/(z - \alpha^j) \cdot \alpha^j/n, j = 0, 1, ..., n - 1$. Hence

$$\lambda_0(z) = \sum_{1}^{n} l_{j0}/(\operatorname{sgn} l_{j0}^*) = \frac{1}{n} \sum_{0}^{n-1} \frac{z^n - 1}{z - \alpha^j} = z^{n-1},$$

so that $\lambda_0^* = 1$. Then from (2.8) we have

$$I_{i1}(z) = I_{i0}(z) - \frac{I_{i0}^*}{\lambda_0^*} \lambda_0(z) = \frac{\alpha^{2i}}{n} \cdot \frac{z^{n-1} - \alpha^{i(n-1)}}{z - \alpha^i}.$$

Proceeding as before, we obtain, for s = 0, 1, ..., n - 1,

$$L_{ns}(f;z) = (\alpha^{sj+j}/n) \cdot (z^{n-s} - \alpha^{j(n-s)})/(z - \alpha^{j}).$$

In this case because of the property $\sum_{1}^{n} \alpha^{jm} = 0$, m = 1,...,n-1, we have

$$\sum_{j=0}^{n-1} \alpha^{jm} I_{js} = z^m, \qquad m = 0, 1, ..., n-s-1,$$

$$= 0, \qquad m = n-s, ..., n-1.$$
(5.1)

We now state

THEOREM 3. Let f(z) be analytic in D: |z| < 1, continuous in D + C,

(C: |z| = 1). Then the sequence of polynomials $L_{nr}(f; z)$ with E as the n-th roots of unity, converges to f(z) in the L_2 -norm. Consequently, for fixed r,

$$\lim_{n\to\infty} L_{nr}(f;z) = f(z) \tag{5.2}$$

uniformly in $|z| \leq R < 1$.

Proof. Let $f(z) - t_{n-r-1}(z) = \delta(z)$, $e_n = \max[|\delta(z)|, z \in C]$, where $t_{n-r-1}(z)$ is the polynomial of degree n-r-1 of best approximation to f(z) on C. Then

$$\int_{C} |L_{nr}(f;z) - f(z)|^{2} |dz| \leq 2 \int_{C} |\delta(z)|^{2} |dz| + 2 \int_{C} |L_{nr}(\delta(t);z)|^{2} |dz|$$

$$\leq 2e_{n}^{2} \cdot 2\pi + 2 \int_{C} |L_{nr}(\delta(t);z)|^{2} |dz|.$$

Since $\int_C z^m \bar{z}^n |dz| = 2\pi \delta_{nm}$, δ_{nm} being the Kronecker delta, we have

$$\int_{C} l_{jr}(z) \, l_{kr}(z) \mid dz \mid = \frac{2\pi}{n^{2}} \cdot \alpha^{(j-k)(r+1)} \sum_{h=0}^{n-r-1} \alpha^{h(j-k)}$$

so that

$$I_{k,j} = \Big| \int_C l_{jr}(z) \overline{l_{kr}(z)} |dz| \Big| \leqslant \begin{cases} \frac{2\pi}{n^2} (n-r), & \text{if } j=k, \\ \frac{2\pi}{n^2} (r+1), & j \neq k. \end{cases}$$

Hence

$$\int_{C} |L_{nr}(\delta(t);z)|^{2} |dz| \leqslant \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} |\delta(\alpha^{j}) \overline{\delta(\alpha^{k})} I_{k,j}$$

$$\leqslant \frac{2\pi}{n^{2}} e_{n}^{2} (n-r) + \frac{n(n-1) 2\pi(r+1)}{n^{2}} e_{n}^{2}$$

$$\leqslant 2\pi(r+1) e_{n}^{2}.$$

Since $e_n \to 0$ as $n \to \infty$, the theorem is proved.

To prove (5.2) one has only to observe that for $|z| \le R < 1$,

$$L_{nr}(f;z) - f(z) = \frac{1}{2\pi i} \int_C \frac{L_{nr}(f;t) - f(t)}{t-z} dt.$$

Remark. For r = 0, Theorem 3 reduces to a theorem of Walsh and Sharma [16].

The following theorem is an analogue of a theorem of Fejér ([7], see also [12], p. 92) and is proved by the same method.

THEOREM 4. If E denotes the set of n-th roots of -1, and $L_{nr}(f;z)$ the polynomials defined by the algorithm given by (2.10)–(2.12), then there exists a function f(z) analytic in |z| < 1 and continuous in $|z| \le 1$ for which

$$\lim_{n\to\infty} L_{nr}(f;1) = +\infty. \tag{5.3}$$

Proof. If $\beta_k = e^{(2k-1)\pi i/n}$, k = 1,...,n, are the *n*-th roots of -1, we consider the polynomial

$$P_{2n}(z) = \frac{1}{n} + \frac{z}{n-1} + \cdots + \frac{z^{n-1}}{1} - \frac{z^{n+1}}{1} - \frac{z^{n+2}}{2} - \cdots - \frac{z^{2n}}{n}.$$

Then

$$P_{2n}(\beta_k) = \left(1 + \frac{1}{n-1}\right)\beta_k + \left(\frac{1}{2} + \frac{1}{n-2}\right)\beta_k^2 + \dots + \left(\frac{1}{n-1} + 1\right)\beta_k^{n-1}$$

so that $L_{nr}(f;z) = \sum_{1}^{n} P_{2n}(\beta_k) l_{kr}(z)$, where

$$l_{kr}(z) = -\beta_k^{r+1} \frac{(z^{n-r} - \beta_k^{n-r})}{n(z - \beta_k)}.$$

Hence

$$L_{nr}(P_{2n};z) = \left(1 + \frac{1}{n-1}\right)z + \left(\frac{1}{2} + \frac{1}{n-2}\right)z^2 + \cdots + \left(\frac{1}{n-r-1} + \frac{1}{r+1}\right)z^{n-r-1}$$

and

$$L_{nr}(P_{2n}; 1) = \left(1 + \frac{1}{2} + \dots + \frac{1}{n - r - 1}\right) + \left(\frac{1}{r + 1} + \dots + \frac{1}{n - 1}\right) > C \log n,$$

C being a fixed constant independent of n. Similarly, we can verify that if m is an odd integer,

$$L_{nr}(P_{2nm};z) = \sum_{\nu=1}^{n-r-1} z^{\nu} \left[\left(\frac{1}{\nu} - \frac{1}{n+\nu} + \dots + \frac{1}{n(m-1)+\nu} \right) + \left(\frac{1}{n-\nu} - \frac{1}{2n-\nu} + \dots + \frac{1}{n(m-1)+\nu} \right) \right].$$

Then for 2m < n - r,

$$L_{nr}(P_{2m};1) = P_{2m}(1) = 0,$$

and for $m \ge 3$,

$$L_{nr}(P_{2nm};1) = \sum_{\nu=1}^{n-r-1} + \sum_{\nu=r+1}^{n-1} \left\{ \frac{1}{\nu} - \frac{1}{n+\nu} + \dots + \frac{1}{n(m-1)+\nu} \right\} > 0.$$

Set

$$f(z) = \sum_{s=1}^{\infty} \frac{P_{2\cdot 3}s^3(z)}{s^2}.$$

Since $|P_{2n}(e^{i\theta})| \leq \int_0^{\pi} \sin \theta / \theta \ d\theta = 2\lambda$, f(z) is analytic in |z| < 1 and continuous in $|z| \leq 1$. However,

$$L_{3n^3,r}(f;1) = \sum_{s=1}^{\infty} L_{3n^3,r}(P_{2\cdot 3}s^3(z);1)/s^2 > L_{3n^3,r}(P_{2\cdot 3}n^3(z);1)/n^2 = Cn$$

so that $\overline{\lim} L_{nr}(f; 1) = \infty$, which completes the proof of the theorem.

6. RELATION WITH TAYLOR'S EXPANSION

The following theorem establishes a close connection between the polynomials $L_{nr}(f;z)$ based on the roots of unity and the Taylor expansion of f(z) about the origin. For r=0, this theorem is due to Walsh [15, p. 153].

THEOREM 5. If f(z) is analytic in $|z| < \rho$ ($\rho > 1$) and if $P_{n-r-1}(z)$ is the polynomial of degree n-r-1 taken from the Taylor expansion of f(z) about the origin then $L_{nr}(f;z) - P_{n-r-1}(z) \to 0$ uniformly in $|z| \le R < \rho^2$ as $n \to \infty$.

Proof. We shall need the following representation for $L_{nr}(f; z)$.

$$L_{nr}(f;z) = \frac{1}{2\pi i} \int_{C} \frac{f(t)}{t-z} \frac{t^{r}(t^{n-r}-z^{n-r})}{t^{n}-1} dt, \tag{6.1}$$

where C is the circle |z| = R, $1 < R < \rho$. Since

$$f_j = f(\alpha^j) = \frac{1}{2\pi i} \int_C \frac{f(t)}{t - \alpha^j} dt,$$

we have

$$L_{nr}(f;z) = \frac{1}{2\pi i} \int_{C} f(t) \cdot \frac{1}{n} \sum_{i=0}^{n-1} \frac{\alpha^{jr+j}}{t - \alpha^{j}} \cdot \frac{z^{n-r} - \alpha^{j(n-r)}}{z - \alpha^{j}} dt.$$
 (6.2)

Using the identities

$$1/(t-\alpha^{j})(z-\alpha^{j}) = (1/t-z)[(1/z-\alpha^{j})-(1/t-\alpha^{j})],$$

$$\frac{1}{n}\sum_{0}^{n-1}\frac{\alpha^{mj}}{z-\alpha^{j}} = \frac{z^{m-1}}{z^{m}-1}, \qquad m=1,...,n,$$

we can show that for m = 1, 2, ..., n we have

$$\frac{1}{n} \sum_{i=0}^{n-1} \frac{\alpha^{jm}}{(z - \alpha^{j})(t - \alpha^{j})} = \left(\frac{z^{m-1}}{z^{m} - 1} - \frac{t^{m-1}}{t^{m} - 1} \cdot \frac{1}{t - z}\right). \tag{6.3}$$

Combining (6.2) and (6.3) we have (6.1). Since

$$f(z) - P_{n-r-1}(z) = \frac{1}{2\pi i} \int_C \frac{f(t)}{t-z} \cdot \left(\frac{z}{t}\right)^{n-r} dt,$$

we have from (6.1)

$$P_{n-r-1}(z) - L_{nr}(f;z) = \frac{1}{2\pi i} \int_{C} \frac{f(t)}{t-z} \cdot \frac{z^{n-r} - t^{n-r}}{(t^n-1)t^{n-r}} dt.$$

If |z| = Z, then the right side tends uniformly to zero as $(R^{n-r} + Z^{n-r})/R^{n-r}(R^n - 1)$ approaches zero which occurs if $Z < R^2$. This completes the proof of the theorem.

If $f(z) = (z - \rho)^{-1}$, then it is easy to verify that

$$f(z) - L_{nr}(f; z) = (z^{n-r}\rho^r - 1)/(z - \rho)(\rho^n - 1).$$

Also

$$f(z) - P_{n-r-1}(z) = z^{n-r}/\rho^{n-r}(z-\rho)$$

so that

$$L_{nr}(f;z) - P_{n-r-1}(z) = (\rho^{n-r} - z^{n-r})/\rho^{n-r}(z-\rho)(\rho^n - 1).$$

For $z = \rho^2$,

$$L_{nr}(f;z) - P_{n-r-1}(z) = (1 - \rho^{n-r})/(\rho^2 - \rho)(\rho^n - 1)$$

which tends to $\rho^{-r-1}(1-\rho)^{-1}$ as $n\to\infty$. This shows that the result is the best possible.

7. MAXIMAL CONVERGENCE FOR FEKETE POINTS

If K is connected and regular (see [15, p. 170]), then K possesses a Green's function G(x, y) with pole at infinity. In fact the function $\omega = \phi(z) = e^{G+iH}$, where H is conjugate to G in K, maps K conformally onto the exterior of

the unit circle γ in the ω -plane so that points at infinity correspond to each other. C_{ρ} will indicate the locus $G(x, y) = \log \rho > 0$, or $|\phi(z)| = \rho > 1$.

We now establish

Theorem 6. Let C be a closed bounded point set whose complement K is connected and regular. Let $E = \{z_1^{(n)},...,z_n^{(n)}\}$ be a set of n points which maximizes $|V_n(z_1,...,z_n)|$ for points $z_1,...,z_n$ on C, V_n being the familiar Vandermonde determinant. If f(z) is single-valued and analytic on C, then $L_{nr}(f;z)$ converges maximally to f(z) on C.

For r = 0, the result is due to Fekete [15, p. 170].

Proof. Let ρ be a number >1 such that f(z) is single-valued and analytic inside C_{ρ} . Let R be given, $1 < R < \rho$. Then there exist polynomials $\pi_{n-r-1}(z)$ of degree n-r-1 such that

$$|f(z) - \pi_{n-r-1}(z)| \le M/R^n, \quad z \in C.$$
 (7.1)

Hence for $z \in C$,

$$|L_{nr}(f;z) - f(z)| \leq |f(z) - \pi_{n-r-1}(z)| + |L_{nr}(f - \pi_{n-r-1};z)|$$

 $\leq \frac{M}{R^n} + \frac{2^r M}{R^n} \sum_{1}^n |I_{k0}(z)|,$

where the last inequality follows from (7.1) and Lemma 2. Since by the definition of $\{z_k^{(n)}\}_1^n$ we have

$$|l_{k0}(z)| = |\omega(z)/(z-z_{\nu}^{(n)})\omega'(z_{\nu}^{(n)})| \leq 1,$$

it follows that $|L_{nr}(f;z)-f(z)| \leq (M/R^n)(1+n\cdot 2^r)$, so that

$$\overline{\lim_{n o \infty}} \left[\max |f(z) - L_{nr}(f;z)|, z \text{ on } C \right]^{1/n} \leqslant \frac{1}{R}$$
 ,

which proves the theorem.

8. REAL ABSCISSAS (MEAN SQUARE CONVERGENCE)

We consider now the case where E is a set of n real points x_1 , x_2 ,..., x_n lying in [-1, 1] and forming the n-th row of a triangular matrix E. To be precise we should indicate these by $x_1^{(n)},...,x_n^{(n)}$, but for the sake of simplicity, we avoid the superscripts. Let $w(x) \ge 0$ be a given weight function on [-1, 1] with $\int_{-1}^1 w(x) dx = 1$ and let $\{Q_n(x)\}_0^\infty$ denote the sequence of n-th

degree orthonormal polynomials on [-1, 1] with respect to the weight function w(x). We shall make the following hypothesis (H) about $x_1, x_2, ..., x_n$:

(H)
$$x_1, x_2, ..., x_n$$
 are the zeros of the polynomial
$$\omega(x) = Q_n(x) + A_n Q_{n-1}(x)$$
 (8.1)

where A_n is a constant such that the zeros of $\omega(x)$ are real and distinct and lie in [-1, 1].

We have

THEOREM 7. Let the nodes $\{x_i\}_{1}^{n}$ satisfy (H). If f(x) is continuous on [-1, 1], then for any fixed integer $r \ge 0$, the polynomials $L_{nr}(f; x)$ have the property

$$\lim_{n\to\infty}\int_{-1}^{1} \{L_{nr}(f;x) - f(x)\}^2 w(x) dx = 0.$$
 (8.2)

If $w(x) \ge M > 0$, we have

$$\lim_{n \to \infty} \int_{-1}^{1} \{ L_{nr}(f; x) - f(x) \}^2 dx = 0.$$
 (8.3)

Proof. We shall prove (8.2) from which (8.3) follows at once. Let R(x) be the polynomial which best approximates f(x) on [-1, 1] in the uniform norm among all polynomials of degree n-r-1 and let $\max_x |f(x)-R(x)|=e_n$. Then $e_n \to 0$ as $n \to \infty$. Setting g(t)=f(t)-R(t) and keeping in mind the linearity of the operator L_{nr} and its reproducing property (Lemma 1), i.e., $L_{nr}(R;x)=R(x)$, we have

$$\int_{-1}^{1} \{L_{nr}(f;x) - f(x)\}^{2} w(x) dx$$

$$\leq 2 \int_{-1}^{1} \{L_{nr}(f;x) - R(x)\}^{2} w(x) dx + 2 \int_{-1}^{1} (f(x) - R(x))^{2} w(x) dx$$

$$\leq 2e_{n}^{2} + 2 \int_{-1}^{1} (L_{nr}(g;x))^{2} w(x) dx. \tag{8.4}$$

Since the fundamental polynomials of Lagrange interpolation $l_{k0}(x)$ have the orthogonality property:

$$\int_{-1}^{1} l_{j0}(x) l_{k0}(x) w(x) dx = 0, \quad j \neq k,$$

we have on using (2.17):

$$\int_{-1}^{1} (L_{nr}(g;x))^{2} w(x) dx = \int_{-1}^{1} \left(\sum_{1}^{n} \alpha_{k,r} l_{k0} \right)^{2} w(x) dx / \prod_{0}^{r-1} (\lambda_{k}^{*})^{2}$$

$$= \sum_{1}^{n} (\alpha_{k,r})^{2} \int_{-1}^{1} l_{k0}^{2}(x) w(x) dx / \prod_{0}^{r-1} (\lambda_{k}^{*})^{2},$$
(8.5)

where $|\alpha_{k,r}| \leq 2^r e_n \cdot \prod_0^{r-1} \lambda_k^*$. Now $l_{k0}^2 - l_{k0}$ vanishes for $x_1, ..., x_n$ so that $l_{k0}^2 - l_{k0} = \omega(x) S_{n-2}(x)$ whence, from the orthogonality of the Q_i 's, we have

$$\int_{-1}^{1} l_{k0}^{2} w(x) \, dx = \int_{-1}^{1} l_{k0} w(x) \, dx.$$

Hence from (8.5) we have

$$\int_{-1}^{1} (L_{nr}(g;x))^2 w(x) dx \leq 2^{2r} \cdot e_n^2 \int_{-1}^{1} \sum_{k=1}^{n} l_{k0}(x) \cdot w(x) dx = 2^{2r} \cdot e_n^2$$

so that (8.4) yields

$$\int_{-1}^{1} (L_{nr}(f;x) - f(x))^2 w(x) dx \le (2^{2r+1} + 2) e_n^2$$

which proves (8.2).

Remark 1. Theorem 7 holds even when the nodes $x_1, ..., x_n$ satisfy a more general condition, namely, that they be the zeros of the polynomials $\omega(x) = Q_n + A_n Q_{n-1} + B_n Q_{n-2}$, $B_n \le 0$, where A_n , B_n are real constants such that the zeros of $\omega(x)$ are real, distinct and lie in [-1, 1]. Also the function f may be taken to be only R-integrable. The proof of Theorem 7 can be modified as in Erdös-Turán [4] to yield the stronger version.

Remark 2. We have, a fortiori, for $w(x) \ge M > 0$,

$$\lim_{n\to\infty}\int_{-1}^1|f(x)-L_{nr}(f;x)|\,dx=0.$$

9. Strong Mean Convergence

We shall show that if $x_1, ..., x_n$ are the zeros of the Tchebycheff polynomial $T_n(x) = \cos(n \arccos x)$, then a result stronger than Theorem 7 holds. More precisely, we shall prove

THEOREM 8. If the nodes $\{x_i\}_{i=1}^n$ are the zeros of $T_n(x)$ and if f(x) is continuous in [-1, 1], then

$$\lim_{n\to\infty} \int_{-1}^{1} \left[L_{nr}(f;x) - f(x) \right]^{2} dx = 0. \tag{9.1}$$

Proof. Since

$$0 < \int_{-1}^{1} \{L_{nr}(f;x) - f(x)\}^4 dx \leqslant \int_{-1}^{1} \{L_{nr}(f;x) - f(x)\}^4 \frac{dx}{\sqrt{1-x^2}},$$

it is enough to prove that

$$\lim_{n\to\infty} \int_{-1}^{1} \{L_{nr}(f;x) - f(x)\}^4 \frac{dx}{\sqrt{1-x^2}} = 0. \tag{9.2}$$

Proceeding as in the proof of Theorem 7, we may use the polynomial R(x) of degree n-r-1 of best approximation to f(x) on [-1, 1] and $e_n = \max_x |f(x) - R(x)|$. It is easy to see that in order to prove (9.2), it is sufficient to show that

$$\int_0^{\pi} \{L_{nr}(g(t);\theta)\}^4 d\theta \equiv \int_{-1}^1 \{L_{nr}(g(t);x)\}^4 \frac{dx}{\sqrt{1-x^2}}$$

is bounded as $n \to \infty$. From (2.17) we see that $L_{nr}(f; x) = L_{n0}(\Delta; x)$ where $\Delta(x_k) = \alpha_{k,r} \prod_{j=1}^{r-1} \lambda_j^*, \ k = 1,...,n$. Then the result of Feldheim [7, p. 30] applies and we have

$$\int_{0}^{\pi} \{L_{n0}(g(t);\theta)\}^{4} d\theta \leqslant (C_{1} + C_{2} + 2\pi) 2^{4r} \cdot e_{n}^{4},$$

which completes the proof of (9.2).

It follows by using the reasoning of Erdös and Feldheim [4] that if $\{x_i\}_{1}^{n}$ are the zeros of $T_n(x)$ and if f(x) is continuous in [-1, 1], then the following stronger result holds:

$$\lim_{n\to\infty}\int_{-1}^{1}|L_{nr}(f;x)-f(x)|^{p}dx=0, \quad p=1,2,3,...$$
 (9.3)

Following Feldheim [8] we shall also prove

THEOREM 9. If $\{x_i\}_{1}^{n}$ are the zeros of $U_n(x)$ (the Tchebycheff polynomials of second kind) then there exists a function f(x) continuous in [-1, 1] such that

$$\lim_{n \to \infty} \int_{-1}^{1} \{ L_{nr}(f; x) - f(x) \}^2 dx = +\infty.$$
 (9.4)

For r = 0, this result is due to Feldheim [9, p. 77].

Proof. We begin with the identity

$$\sum_{\nu=1}^{n} (-1)^{\nu-1} U_{\nu}(x_{\nu}) l_{\nu r}(x) \equiv U_{n-r-1}(x), \tag{9.5}$$

which follows from the observations that

$$U_{n-r-1}(x_v) = \sin \frac{(n-r)\nu\pi}{n+1} / \sin \frac{\nu\pi}{n+1} = (-1)^{\nu+1} U_r(x_\nu)$$

and $L_{nr}(U_{n-r-1}; x) = U_{n-r-1}(x)$. For r = 0, (9.5) is the known identity

$$\sum_{1}^{n} (-1)^{\nu+1} l_{\nu 0}(x) \equiv U_{n-1}(x).$$

Since $U_{n-r-1}^2(x) = \sum_{0}^{n-r-1} U_{2k}(x)$, we have from (9.5):

$$\sum_{i=1}^{n} \sum_{k=1}^{n} (-1)^{i+k} U_r(x_i) \ U_r(x_k) \int_{-1}^{1} l_{ir}(x) \ l_{kr}(x) \ dx$$

$$= \int_{-1}^{1} U_{n-r-1}^2(x) \ dx = \sum_{\nu=0}^{n-r-1} \int_{-1}^{1} U_{2\nu}(x) \ dx$$

$$= \sum_{\nu=0}^{n-r-1} \frac{2}{2\nu+1} > \log \frac{2(n-r)}{3}.$$

Consider the function $f_n(x)$ which is piecewise linear between the x_j 's and satisfies $f_n(x_\nu) = (-1)^\nu U_r(x_\nu)/(r+1)$, $\nu = 1,...,n$. For $x \ge x_n$ and $x \le x_1$ let $f_n(x)$ be constant. Then $|f_n(x)| \le 1$. Also

$$\int_{-1}^{1} (L_{nr}(f_n; x))^2 dx > \log \frac{2(n-r)}{3}.$$

By the Weierstrass approximation theorem there exists a polynomial $\phi_m(x)$, of degree m = m(n), such that

$$|\phi_m(x)| \leqslant \frac{3}{2}, \quad |x| = 1,$$

$$\int_{-1}^1 (L_{nr}(\phi_m; x))^2 dx > \frac{1}{2} \log \frac{2(n-r)}{3}, \quad n = r+1, \quad r+2,....$$

Set $f(x) = \sum_{\nu=1}^{n} C_{\nu} \phi_{n_{\nu}}(x)$ where $C_1 = n_1 = r + 1$ and where the coefficients C_{ν} and the indices n_{ν} are determined as follows:

$$C_{k+1} = \min\left\{\frac{C_k}{4}, \frac{1}{\max_{|x| \le 1} \sum_{n=1}^{n_k} \left| \frac{l^{(n_k)}(x)}{r} \right|}\right\}, \qquad k = 1, 2, \dots$$

and n_{k+1} is the smallest integer for which $n_{k+1} > m(n_k) + 1$. Then it can be shown, exactly as in [9] and in the earlier paper [5] that f(x) is continuous and that (9.4) holds.

10. CONCLUDING REMARKS

10.1. By the method of Turán [13] we can show that if $\{x_i\}_{1}^{n}$ are the zeros of the Jacobi polynomial $P_n^{(\alpha,\beta)}(x)$, and if $f \in C[-1, 1]$, then

$$\lim_{n\to\infty} \int_{-1}^{1} (f(x) - L_{nr}(f; x))^2 dx = 0$$

if $max(\alpha, \beta) < 1/2$, and

$$\lim_{n \to \infty} \int_{-1}^{1} |f(x) - L_{nr}(f; x)| \, dx = 0$$

if $\max(\alpha, \beta) < 3/2$.

Following the reasoning of Askey [1] it can be proved for the same $\{x_i\}_{1}^{n}$ and $\alpha = \beta \ge 1/2$ that

$$\lim_{n\to\infty}\int_{-1}^{1}|L_{nr}(f;x)-f(x)|^{p}(1-x^{2})^{\alpha}dx=0$$
 (10.1)

if $p < 4(\alpha + 1)/(2\alpha + 1)$, and that if $p \ge 4(\alpha + 1)/(2\alpha + 1)$, there exists a continuous function f(x) for which (10.1) fails.

10.2. It is easy to prove a generalization of a result of Fejér [6]: if the Lebesgue constant $\lambda_n(E) = \max_x \sum_1^n |l_{h0}(x)| < c_1 n^{\beta}, \quad 0 < \beta < 1$, then $L_{nr}(f;x)$ converges uniformly to f(x) in [-1,1] if $f \in \text{Lip } \gamma, \gamma > \beta$. Indeed if Q(x) is the polynomial of degree n-r-1 approximating best to f(x) in [-1,1] in the uniform norm, then

$$|f(x)-Q(x)|\leqslant c_2n^{-\gamma}.$$

Using the reproducing property of $L_{nr}(f, x)$ we have, by Lemma 2,

$$|L_{nr}(f,x) - f(x)| \le |L_{nr}(f-Q;x)| + |Q(x) - f(x)|$$

$$\le c_2 n^{-\gamma} + 2^r \cdot c_2 n^{-\gamma} \cdot \sum_{1}^{n} |l_{k0}(x)|$$

$$\le c_2 n^{-\gamma} + c_2 n^{\beta-\gamma};$$

the assertion follows because $\gamma > \beta$.

- 10.3. Using the method of Curtis [2] for L_{n0} and L_{n1} we see, because of Lemma 1, that for every given matrix E there exists a continuous function $f \in C[-1, 1]$ such that $L_{nr}(f, x)$ fails to converge uniformly in [-1, 1].
- 10.4. We have not been able to prove the analog of Bernstein's result which asserts that for $f_0(x) \equiv |x|$ and for equidistant abscissas, $L_{n0}(f_0; x)$ converge to f_0 at no point of [-1, 1] except (-1, 0, 1). It would be interesting to find sets of nodes for which the operator sequence $L_{nr}(f, x)$ converges to f(x) for fixed $r \ge 1$ in some norm while $L_{n0}(f, x)$ does not. [The converse cannot occur, because of (2.15).]

REFERENCES

- 1. R. Askey, Mean convergence of orthogonal series and Lagrange interpolation, *Acta Math. Hung.*, to appear.
- P. Curtis, Convergence of approximating polynomials, Proc. Amer. Math. Soc. 13 (1962), 385-387.
- 3. Ch. J. de la Vallée Poussin, Sur les polynomes d'approximation à une variable complexe, Bull. Acad. Roy. Belg. Sci. 3 (1911), 199-211.
- P. Erdös and E. Feldheim, Sur le mode de convergence pour l'interpolation de Lagrange, C. R. H. Acad. Sci. 203 (1936), 913-915.
- 5. P. Erdös and P. Turán, On interpolation I, Ann. of Math. 38 (1937), 142-155.
- L. Fejér, Lagrangesche interpolation und die zugehörigen konjugierten Punkte, *Math. Ann.* 106 (1932), 1–55.
- L. Ferér, Interpolation und konforme Abbildung, Nachr. Ges. Wiss. Göttingen (1918), 319–331.
- 8. E. Feldheim, Quelques recherches sur l'interpolation de Lagrange et d'Hermite par la méthode du développement des fonctions fondamentales, *Math. Z.* 44 (1938), 55-84.
- E. Feldheim, Théorie de la convergence de procédés d'interpolation et de quadrature mécanique, Mém. Sci. Math. Acad. Sci. 95 (1939), 1-90.
- T. S. MOTZKIN AND A. SHARMA, Next-to-interpolatory approximation on sets with multiplicities, Canad. J. Math. 18 (1966), 1196–1211.
- 11. T. S. MOTZKIN AND J. L. WALSH, On the derivative of a polynomial and Chebyshev approximation, *Proc. Amer. Math. Soc.* 4 (1953), 76-87.
- V. I. SMIRNOV AND N. A. LEBEDEV, "Functions of a Complex Variable: Constructive Theory," M.I.T. Press, Cambridge, MA., 1968.
- 13. P. Turán, On some problems in the theory of mechanical quadrature, *Mathematica* (Cluj) 8 (1966), 181-192.
- 14. V. S. VIDENSKII, On uniform approximation in the complex plane (Russian). *Uspehi Mat. Nauk.* 11 (1956), 5(71), 169–175.
- J. L. Walsh, "Interpolation and approximation by rational Functions in the Complex domain," Amer. Math. Soc. Collog. Pub. Vol. 20, 3rd ed., American Mathematical Society, Providence, RI., 1959.
- J. L. WALSH AND A. SHARMA, Least squares and interpolation in roots of unity, Pacific J. Math. 14 (1964), 727-730.