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O. INTRODUCTION

Let

denote the n-th row of a triangular matrix E and letf(x) be defined in [-1,1].
The polynomial LnC/, En) := Lno(f; x) of degree n - 1 interpolatingf on En
has been, since Newton and Lagrange, the subject of many investigations.
It is a well-known result [9, p. 5] of Faber and Bernstein that

(1) for every matrix E, there exists a continuous function f(x) on
[-1, 1J for which the sequence {Lno(f; x)} does not converge uniformly.

However, Fejer [6J has shown that

(2) if the Lebesgue constant AnCE) < ens, 0 < {3 < 1, then the
polynomials L no(/; x) converge to f(x), uniformly in [-1, 1], if fE Lip y,
y > {3.

* Presented in part to the American Mathematical Society on January 25, 1970 (Notices
Amer. Math. Soc. 17 (1970), 257), and at the Conference on Constructive Function
Theory, Varna, Bulgaria, 1970.

t Deceased.
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On the other hand, Erdos and Turan [5] have shown that

(3) if the points of En are the zeros of a polynomial Qn of degree n,
where {Q,,} is an orthogonal sequence with respect to a weight function
w(x) ;:?: 111 > 0, -1 :(;; x :(;; 1, then {LnoU; x)} converges in the mean square
ta f(x), even whenf(x) is only R-integrable.

Later Erdos and Feldheim [4J pointed out that

(4) for the zeros of the Tchebycheff polynomial of the first kind an
even stronger result holds:

p = 1,2,...

while for the zeros of the Tchebycheff polynomials U,,(x) of the second kind
(U"ex) = sin(n + l)l1/sin e, x = cos e) there exists a continuous function/(x)
far which J~l (Lno(f; x) - f(X»2 dx approaches infinity as 11 increases.

For other related results see Feldheim [8]. More recently Askey [1] has
shown that if En consists of the zeros of Q;;+l/2J(X). the ultraspherical
polynomial, ex ;:?: - 1/2, then for every continuousf

.1

1~~ J ! Lno(j; x) - f(x)IP (1 - x2
)" dx = 0

-1
(0.1)

if p < 4(ex + l)/(2ex + 1), while if p ?: 4(ex + 1)/(2,:x + 1) there exists a
continuous function f(x) for which (0.1) fails. In the complex domain,
Walsh and Sharma [16] proved

(5) the mean square convergence of L"oU; z) to f(x) on the unit circle,
when En consists of the n-th roots of unity and f(x) is analytic in i z I < 1
and continuous in I z I :(;; 1.

The object of this paper is to give a scheme for defining a linear polynomial
operator Lnr(f; x) for any given integer r, 0 :(;; r :(;; n - 1, which reduces
for r = 0 to the Lagrange interpolation polynomial and which for r = 1
gives the so-called next-to-interpolatory polynomial (ef. Motzkin and
Sharma [10]). We show that for fixed r, these polynomials share many of
the convergence properties of the Lagrange polynomials including statements
(1)-(5). We first develop (in Section 1) a general matrix-theoretic rank
diminishing procedure, a special case of which yields the polynomial opera
tors L nr •
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1. PRELIMINARIES ON MATRICES

1.1. In Section 1, we denote matrices by italic capitals, square matrices
by greek capitals, the rank of A by A', the transpose by AT, rows by b or b';
j means a row consisting of zeros and one 1, as well as the position number
of that 1; correspondingly we use c and k for columns. Then jA, Ak, jAk
are a row, a column and an element of A; A "'" Ak means A with Ak deleted.

1.2. If the columns of A depend on some of their linear combinations:
A = AC' D, then the columns of BA depend on the corresponding linear
combinations: BA = BAC . D. But if, for some column c of C, BAc = 0
then the columns of BA depend already on BA(C"'" c).

1.3. If Ac 7'= 0, BAc = 0 then (BA)' < A'. One proof uses 1.2 and the
fact that there exists C with A' columns one of which is c such that
(AC)' = A'.

[A. LEMMA. If r = bAc - Acb then (1) rAe = 0, (2) (rA)' < A' if
A :::/=- 0, (3) br = 0, (4) b'A = 0 implies b'FA = 0, (5) FA = ALI where
LI = bAc - cbA.

Proof (1) follows from jrAc = bAc . jAc - jAcbAc = O. (2) follows
from (1) and 1.3 if Ac 7'= 0; if Ac = 0 then r = 0, FA = O. We have
(3) by br = bAc . b - bAcb, (4) by b'TA = bAc . b'A - b'AcbA, (5) by
bAc . A == A . bAc, where bAc denotes two scalar matrices of possibly
different sizes. (In general, f = A - AF, .p = A - FA, with scalar A, implies
fA = A.p.) Note that for bAc 7'= 0, T' = r/bAc = 1 - Acb/bAc and
LI' = LI/bAc have the same properties.

1.5. By assertion (2) of the lemma a general rank diminishing algorithm
can be defined as follows. Choose band c and replace A by

r A = ALl = bAc . A - AcbA.

Now choose new band c and continue. Then 0 is reached after at most A'
steps. But, by (3) and (4), if any b is used again at the next or some later
step, 0 is reached at that step. By (5), the same holds for the reuse of c.

The variant T'A has the same properties but halts when bAc = O.

1.6. If the columns of 1 are consecutively chosen as c, then by (1) of the
lemma, the first columns in the resulting matrices in turn become and stay 0
and may as well be omitted. This amounts to replacing, at each step, A by
A(Ll "'" Llk) or A(Ll' "'" Ll'k), where k is the first column of 1. We have:

If the columns of A are independent, so are those of

A(Ll' "'" LI'k), LI' = 1 - kbA/bAk.
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Proof Independence of the columns of A can be written BA = 1,
Denoting the first row of 1 by j there follows (B"jB) A(.1' "'- j'k) =
(l "'-j)(.1' "'- ,.,j'k) = 1.

As the number of columns of A decreases, B loses its first rows.

1.7. For a real A, choose c = k as in 1.6 and b such thatjbT = sgnjAk
for all j; here sgn 0 is arbitrary subject to -1 ~ sgn 0 ~ 1. In this case, if
one starts with an invertible A, at the first step the signs of the highest
order determinants are the same as those for the remaining rows of A-I.

2. THE POLYNOMIAL ALGORITHM

To the matrix A in Section 1 there correspond the polynomials Ag;
~ = ( ... , x2, x, 1)T and for given distinct Xl' x 2 , ••• , the polynomial operator

fA = (f(XJ,f(X2)"") A,

which assigns to every function f the polynomial fAf In particular, for /1
defined by

fA~ is the interpolating polynomial to f; .<1-1 is the Vandermondian of
Xl' X2 ,.... In fact if we denote by 8m the m-th elementary symmetric function
in the 11 variables Xl , X 2 , ... , Xn :

l~m~l1, so=1 (2.l)

and by s~~) the m-th elementary symmetric function in the n - 1 variables
with Xv missing; i.e.,

(2.2)

then we have A = (An), where

\ (l)k-l [(j) In ( )1
Ilik = - Sn-k!. Xv - Xi j'

",tJ

Let E = {Zl ,... , zn} be a set of n (distinct) points in the complex plane
and let Ijo(z) (j = 1,... , n) be the fundamental polynomials of degree n - 1
of Lagrange interpolation defined by

IjO(Zk) = Dik , j = 1,... , n. (2.3)

The Lagrange interpolation operator fA =Lno(f; z) is then given by

n

Lno(f; z) = I.,/;Ijo ,
1

where /; = f(zj). (2.4)
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If we set

71

w(z) = rI (z - Z,),
1

then

MOTZKIN AND SHARMA

Wi = (w'(Z;))-l = n (z, - Zk)-l '*' 0,
"h

where S,~;) is given by (2.2). Denote by I,t the coefficient of zn-1 in 1'0 ; then
I;t = W; =;b O. If WI"'" Wn are given positive numbers, set

n n-l n

,\o(Z) = L wj1/;0(z)fsgn I~ = L (-1)" L: wj1 I W; I s~)zn-k-1. (2.6)
1 1 1

Then the coefficient of zn-l in Ao(Z) is given by

71

'\0* = L I/~ I wj1.
1

If we now form the polynomials 1;I(z) of degree 11 - 2 given by

(2.7)

j = 1,...,n, (2.8)

then we can define the polynomial operator L n1(J; z) as follows:

n

L n1(f; z) = L:/;-1jl(Z)'
1

(2.9)

This process of determining the polynomials 111 from the polynomials 1;0
can be iterated r times. For simplicity, from here on let WI = ... = W n = 1.
If f' is a fixed integer, 1 ~ r ~ n - 1, suppose we have already formed the
polynomials {/;,H}; of degree n - r. If Itr-1 and '\:-1 denote the coefficient
of zn-r in I,.r-l and A"_1 , we set

I,.,.(z) = 1",r-1(z) - (lj~r-lfA,':-I) ",.-I(Z),

'\r-l(Z) = L: Ij.r_tCsgn 1;*.r_l)-1 + L EAr-I, I E; 1= 1,
iEll ;El2

(2.10)

(2.11)

where II = {j 11;~r-1 =1= O} and 12 = {j 11;*.r_l = O}. The linear polynomial
operator

71

Lnr(f; z) = L:f/;r
1

(2.12)

maps functions into polynomials of degree :(; n - r - 1. The possible
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presence of arbitrary E/S, I Ej ! = 1, brings in an indeterminacy in the algo
rithm (2.10) which we discuss in some detail in Section 3. However, i,\e

still have

LEMMA 1. The linear operators Lnr(f; z) given by (2.1) are proji'CtfO/l

operators onto the space ofpolynomials of degree ~ 11 .- r - 1. Also

n

I Ij~'Zjm =c 0,
1

m == 0, 1,... , n - r - 2,
(2.13)

= i, m = n - r - 1.

In particular, we have

n

L 11n-l= l.
1

(2.14)

Proof For r = 0, the lemma is well known as a reproducing property of
Lagrange interpolation which is exact for polynomials of degree:::::;; 11 -. 1.
This gives (2.13) for r == 0. The proof is now completed by induction on r,
using (2.13) and (2.10).

The above lemma is independent of the arbitrary E/S, ! E) \ = 1, which
occurs in lk,. when It-l vanishes. Formula (2.13) guarantees that the l/,._l
(j = 0,1,... , n _. 1) can not all vanish. We now obtain an upper bound aD

I L",.(f; z)i independent of all E/S that may occur in (2.12). We have

LEMMA 2. If maXi Ifi I = M, then for any given 1', 1 :::::;; r ~ 11 -.' 1. we
have

n

I Ln,.(f; z)\ ~ 2rMI 11kO(z)l·
1

(2.i5)

Proof Denote by I r - 1 the set of indices for which l;~'_l 7'= 0 and by J'--l
the complementary set. Then using (2.10) we have

n

A.;'--lLnr(f; z) = Ij;(li,r-1A~-1 - 11r-l>",.-1)
1

" ,If,· lli,,-1 I :lj~'r-l I - l~r-l I. Iu-l(sgn /1,_1)-1
i=l' jElr_ t jell'_l

= I lj,r-laj,l(f) + L [j,HPj,l(!)'
jElr_ 1 jElr_ 1

640 /512-5 *
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where
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J:.j,l(f) = I Ir 1'-1Ui(Sgn/t1'_1)-1 - Ii(sgn r!.1'_1)-1},
iG:/r _ 1

Then

f3j,l(f) = L li~1'-1UiCsgn ItH)-l - Ii€J,
iE/i'_1

j E J1'- 1 •

.i E 1r - 1 ,

(2.16)

max{1 (Xj,I(f)[, I f3f,l(f)I} <; 2M I II:' r- 1 1= 2MA:_1 •

];E!r-l

If 1;0-2 = {i I/tr-2 oft O}, Jr-2 = {j I/j~r-2 = O} and if/'1) denotes a function
such that

f (O = fhl(z.) - (x. (j')
J - J - J,l , j E 11'-1'

j E J 1'- 1 ,

then it is easy to see that

"A:-1"A:-2L n,.(f; z) = I Ij"'_2(Xj,2(f(1» + I lj,r-2(3j,2u(1»,
jE/r _

2
jEJr _

2

where (Xj,2(f(11), f3j,lf(l) are defined in a way analogous to (2.16). Also

max(1 rY.i,2(fh», I f3i,2(f1»/) <; 22M"A;__lA:__2 .

Repeating the above process r times, we finally have

or-I n

I1 Ak *Ln1'(j; z) = I CX/l;,,.lkO
o 1

(2.17)

where 10'./,.,. I~ 21'jll(n~-1 A"*). Taking absolute values in (2.17) completes
the proof.

3. SPECIAL SETS E AND INDETERMINACY

In general, it is very difficult to compute the numbers lj~1'_1 and A;_l . For
special E, it might also happen that for some rand), Itr-1 = 0 but from (2.13)
it is clear that Itr-1 can not vanish for all) and hence "A:=--l can never be zero.
However, as explained in Section 2, the vanishing of It1'-1 brings in an
indeterminacy in the linear operators.

If I~~*, \j* denote the coefficient of zn-2 in 1/1;0 and Ao , respectively, then
It = 0 is equivalent to '\0*1;'; = Xt*"lto, namely, to '\0*(x" - LXi) = At*,
i.e., x" = (At*jAo*) + L Xj' Hence only one 11:1 can vanish (also for any
given positive weights wJ.
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With all Wj = 1 in (2.7) and (2.8), the condition iii = 0 becOtnes

183

n

L (z" - zJ Uj = 0,
j=-l

'I -- '1/ Ill.,. - .,. I/,;5-- ~ .. I-i -j"
l"F-J

whence z;,; = L ZjuJJ:. Uj' As an average, Zk is in the reiaive interior of
the convex hull of the Zj •

If 21 = 0 and if for some E i= 1, I E \ = 1, Zj E E entails Zj"- E E, then by
symmetry L ZjUj = 0, hence lit = o.

When E has only 3 or 4 points, we have the following

THEOREM 1. If n = 3, Iii = 0 if and only if Z1 lies between Z2 and :3 .
For n = 4, li~ = 0 if and only if Z1 is the orthocenter of the acute-angled
triangle (Z2 , Z3 , Z4)'

Proof For n = 3, the result follows from (3.1) ,,,hien reduces to
sgn(zl - Z2) +- sgn(z1 - za) = O.

For 11 =, 4, (3.1) becomes

i 2 3 - =4 i sgn(Zl -- Z2) +- \Z4 - 2 2 'I sgn(Z1 - Za) + !Z2 - 23·~ sgn(Zl - ZJ) = 0.
(3.2)

Equation (3.2) means that 3 vectors of lengths I Z2 - Za I, I Z3 - -'4 [,

i 2-l -- 2 2 I, form a triangle. But the lengths of the sides of a triangle determine
the angles except for factors ± 1. Hence but for a rotation there are only
two possible positions:

(3.3)

or

From these we see that sgn(z1 - zJ, sgn(zl - Z2), sgn(zl - Z3) differ from
sgn(zz - -'3), sgn(Za - Z4)' sgn(Z4 - Z2) or their reciprocals only by a constant
rotation factor. Therefore we have either

or

sgn(Zl - Z4)
sgn(Z2 - Z3)

sgn(Z1 - Z2)
sgn(zs - Z4)

sgn(Zl - Z3)
sgn(z1 -- Z2)

(3.5)

sgn(z1 - zJ sgn(zz - Z3) = sgn(Zl - zz) sgn(za - Z4)

= Sgn(Zl - -'3) sgn(Z4 - z;). (3.6)
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Now (3.6) can not hold; for if it did then the three vectors (ZI - Z4)(Z2 - Z3),

(ZI - Z2)(Z3 - zJ, (ZI - Z3)(Z4 - Z2) would have the same argument which
is impossible since their sum is zero, and ZI , Z2 , Z3 , Z4 are distinct.

If "2' Z3' Z4 are colinear and (3.5) holds, then (3.6) also holds. Hence
Z2 , Z3 , Z4 are not colinear.

In case (3.5) holds, even if we allow, instead of equality, equality with
± factor, i.e.,

sgn(ZI - Z4) = ± sgn(zl - Z2) = + sgn(zl - Z3) (3.7)
sgn(z2 - Z3) sgn(z3 - Z4) - Sgn(Z4 - Z2) ,

it means that if we take lines through Z3 , Z4 , Z2 parallel to the lines Z4Z2 ,

Z2Z3 , Z3Z4, respectively, and turn them about the same angle, then they
should be concurrent at ZI' Now the point of intersection of any two of
these lines while they are turning moves on a circle which is of the same
size as the circumcircle of the triangle (Z2 , Z3 ,Z4)' These three circles meet
at the orthocenter because the angle at the orthocenter and that at the vertex
are supplementary. Thus the orthocenter is the only point ZI fulfilling (3.7).
But it is easy to see that (3.5) will be fulfilled if and only if ZI is in the interior
of the triangle (Z2 , Z3 , Z4)' This completes the proof of the theorem for 12 = 4.

Remark 1. If 12 = 4 and the points Xl > X 2 > Xs > Xi are real then the
numbers sgn It, sgn Ii"" sgn Ilk, sgn ttl.: are 1, - I, 1, -1 for k = 0;
1, -1, -1, 1 for k = 1; and 1,1, -1, -1 for k = 2.

Remark 2. The set of all sequences (ZI , •.• , zn) for which til = °has
dimension 5 for 12 = 3, but probably 212 - 2 for 11 > 3. To prove it is
;? 212 - 2, let ZI = 0, Zj = Ei - 1 (En - 1 = 1), j > 1. Then an arbitrary small
variation of the Zj , j > L entails (if we want I~ = 0) a small variation of
ZI (for eachj the Jacobian is ~ 0, so that the inverse function theorem can be
applied).

We give now a second proof of the fact that the dimension mentioned
above is ;? 2n - 2 for n > 3. From (3.1) we see that Itt = °if and only if

Hence if Z2 , •.. , Zn are real, Z2 < ... < Zn , and y", = 1/I1Nlc.Nl I Zk - Zj I,
then Itt = °will hold if and only if Zk < ZI < Zlc+l where

Y2 + ... + Y" = Y"+l + ... + Yn • (3.8)

Since for 11 > 3, Y3 > Y2 , Yn-l > Yn , we have 3 ~ k ~ 11 - 2. For n = 3
we get Z2 < Z1 < Z3 ; for II = 4 nonexistence of Z1 ; for 1l ;? 5, Z1 exists only
for special positions of Z2 , ... , Zn (e.g., symmetry for odd n), and then Z1 can
be chosen on an interval. For 11 ;? 5, any k, 3 ~ k ~ 11 - 2, can occur;
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indeed, for small Z3 - Z2 the left member is larger in the equation that ~s

obtained from (3.8) by multiplying by the least common denominator,
while for small Zn - Zn-1 the right member is larger, hence by continuity
they can be equal. For 11 = 5, we have k = 3 and the condition (3.8) reduces
to 2 3 - Z'2 = Z5 - ZJ, , i.e., symmetry.

To find a root of F(zJ = 0 for general complex Z2 , ... , Z'", where
F{z]) = 2:,; )'7., sgn(zk - Z1), note that for a fixed large 'I Zl I, Fez;) stays close
to a circle about O. If we contract the! Z1 j-circle the image must at sometime
pass through 0 unless 0 lies within, or on, one of the circles F(z).,} with sgn G
arbitrary of absolute value 1. (Note that for k= 2, ..., 11, F(z;J = A.t +Ykei;;,

- 77 < (j ~ -:r, with AI,; = 2:,:~2,v,",d'v sgn (z" - Zk), is a circle with centre Ai,
and radius Yk)' For example, for n = 4 this occurs (as seen by a simple
computation) if and only if the triangle (Z2, Z3 , z,t) has an angle ,p,
77/2 ~ r/> ~ 77 at Zk' For Zk = €k-1 (En - 1 = 1),0 does not lie in, or on, these
circles; for if, for instance, 0 = hct + 2:k>2.1\ sgn(1 -- Ek--~), ! Ci I ~ L then
(sillce aU J'k are equal)

n-2

ex = - L sgn(l -- Ek) = --cot -:r/(2/1 -- 2) < -1,
1

11 >3.

Hence F(zl) = 0 for some Z1 ; in fact, for Z1 = O. For an arbitrary small
change of the Zh' , the circles still do not include 0, hence F(z1) = 0 still has
a root, which proves that the above-mentioned dimension is ;? 2n - 2.

4. NEXT-TO-INTERPOLATORY POLYNOMIALS

Let Ih denote the class of polynomials of degree ~ k, let 7(Z) denote the
next-to-interpolatory polynomial of degree 11 -- 2 which minimizes the norm
max;{w; if; - t(z;)I} among an polynomials ofdegree ~ n -- 2, where the 11';8

are given positive constants. We now prove

THEOREM 2. The polynomials L n1(f; z) of (2.9) coincide with the next-[o
interpolatory polynomials 7(Z). Moreover iff is not a polynomial of degree
~ n - 2, then the following statements are equivalent:

(4.1)

is independent of i,

is independent off;

(in the notation of Sections 1 and 2), where k = (1,0, O, ..Y and b is given
by bl = wjl(sgn jAk)-l.

Wi Ii; - L n1(f; z;)1 = I Bo1/'\0*'

h - L 1U" "'-)arg' n, -, = arg W'(Zi),
Bo
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1 n
LnICf; z) = '*L w;lAif; z) lifo I, (4.3)

110 1

where A,,(j; z) is the polynomial interpolating f in all points of E except Zk ;

and Bo = L.;fJi~ =1= O.

Proof We begin with the explicit formula for T(Z) given by Motzkin
and Walsh [II]. They show that

Hence
n n

" " f.L;T(Z) = L..JJiO - Bo(u(z) L.--
lIZ - Zi

n

= L1J;1(Z),
1

which proves the first part of (4.1). The second part is a reformulation of
(2.9) in the notation of Section 1.

Equation (4.2) is a rewording of the equations which characterize T(Z)
[II, p. 84]; corresponding results are given there for general families and
weights. The second part of (4.2) can also be rewritten as

arg \ Ii - Ln1(f; Zi) I = arg B
I w'(z;) \ 0

is independent of i.

(4.4)

In this form the result (4.2) is equivalent to the conditions of Videnskii [3, 14].
In order to prove (4.3) we observe that from [10, Theorem 2] it follows
(after a change of notation) that

1 n
7(Z) = x* L: w;lA,,(J) lifo I,

o 1

n

Ak(f) = L:fi\,k ,
1

We shall show that 7(Z) given by (4.4) and L n1(f; z) given by (2.9) and (2.8)
are equal. Now (4.4) implies that

n n n

T(Z) = L: W;l /Ito I L: !JA;.k/L W;l 11:0 I
k:=l ;=1 k=l
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h h '*, It \ -...,..," ,-I 1* I ~ -It is therefore enough to s ow t at AD IjO - 'jO"C - 2..1 ltl.; ! 1,;0 I/,U, 01

equivalently that

n n

L l\'i;I(ljO - \.,J 1/;0 I = lfo L wi:111;o/(sgn ito)
k=l 1

since AD* = L~ \1'i1 11:0 \. We shall indeed show that

which implies (4.5). Now it is easy to see that

(4.5)

(4:5)

so that ljo - ;'j,I.; = ((z - Zj)/(z ~ ZI)) liD' Since lio = 170w(z)/(z - z,) and
1"0 = l,*ow(z)/(z ~ ZI.;), we have proved (4.6). This completes the proof of
Theorem 2.

5. MEAN SQUARE CONVERGENCE FOR ROOTS OF UNITY

Let E = {l,:x,... , an-I} be the n roots of uaity ",,:tl1 ,~" = 1. Then
ljo = (zn - l)/(z - o:i) . aJ/n, j = 0, 1, ... , f1 - 1. neEce

so that '\0* = 1. Then from (2.8) we have

Proceeding as before, we obtain, for s = 0, 1,... , fi - 1,

In this case because of the property :L; exim = 0, 111 = 1,... ,11 - 1, we have

n-l

L (Xjmljs = zn!,
j=O

m = 0, 1, ... , n - s - 1,

= 0, 111 = n - s•... , 11 - 1.

We now state

THEOREM 3. Let fez) be analytic in D: I z I < I, continuous in D + C,
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(c: I z I = 1). Then the sequence ofpolynomials Ln,.(f; z) with E as the n-th
roots of unity, converges to fez) in the L 2-norm. Consequently, for fixed r,

lim LnrC/; z) = fez)
n-.oo

(5.2)

uniformly in Iz I ~ R < 1.

Proof Letf(z) - tn- r - 1(z) = o(z), en = max[l o(z)l, zE C], where tn-r-l(z)
is the polynomial of degree n - r - 1 of best approximation to fez) on C.
Then

Ie I LnrU; z) - f(z)1 2 I dz I ~ 2 Jc I o(z)12
j dz I + 2 fc I Lnr(8(t); z)121 dz

~ 2en
2

• 21T + 2 fc I L nr(8(t); z)12 I dz I·

Since Ie zmzn Idz I = 21TOnm , onm being the Kronecker delta, we have

f ljr(z) IkrCz) I dz I = 2: .oY-k)(r+l} nfl rx"(J-k}
e n k=O

so that . -- l:1: (n - 1'), if j = k,
Ik,j = IJe IjrCz) lkr(z) I dz I I~ 21T

-2 (I' + 1), j =F k.n

Hence

n-l n-lJ I Lnr(o(t); z)12 I dz I ~ L L I 8(rxi ) 8(rxk) Ik,i
e j~O k=O

_____ 21T 2( .) + n(n - 1) 21T(r + 1) 2
"" -2 en n - 1 ? enn n-

~ 21T(r + 1) en
2

•

Since en -+ 0 as n -+ 00, the theorem is proved.
To prove (5.2) one has only to observe that for I z I <:; R < 1,

L (f' z) - J(z) = ~ I LnrC/; t) - JCt) dt.
nr , 21TZ C t - z

Remark. For I' = 0, Theorem 3 reduces to a theorem of Walsh and
Sharma [16].

The following theorem is an analogue of a theorem of Fejer ([7], see also
[12], p. 92) and is proved by the same method.
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THEOREM 4. If E denotes the set of n-th roots of -1, and Lnli; z) the
polynomials defined by the algorithm given by (2.10)-(2.12), then there exists
a function fez) analytic in i z I < 1 and continuous in I z I ,s; 1 for which

lim Lnr(f; 1) = +oc.
n-'TOCJ

(5.3)

Proof If fh = e(Zk-l)1Ti/n, k = 1,... , 11, are the n-th roots of -1, we
consider the polynomial

~ . 1 z zn-l zn+l zn+2 z2n
pzn\z) = -+---+ ... +--------_." ---.

'I 11 - 1 1 1 2 n

Then

so that Lnr(f; z) = L~ P2nCf3,J I,,,.(z), where

I (7) = _f3r+l (zn-r - f1~-r)
kr - /.; n(z - (3/.;)

Hence

L (P .~) - (1 I 1) + ('1, 1) _., ,nr 2n,":' - T --- Z - T -- ~ ... -r- .~.
11-1, .2 n-2,

1 1 \+ I + -.-J zl1-·r-l
\n-r-l r,L

and

Lnr(Pzn ; 1) = (1 + ~ + ... + n _ ~ _ 1)

+ (-I_ + ... -.1- _1_) > Clog n
1'+1 ' 11-1 '

C being a fixed constant independent of n. Similarly, we can verify that if m
is an odd integer,

n-r-1 /1 1 1 \
Lnr(P2nm; z) = L ZV [l- - --- + ... + }

v~1 V 11 + v n(m - 1) + v

(
1 1 1+ -.1- ... .-L )

11 - V 2n - v' I 11m - v J.
Then for 2m < 11 - r,



190

and for In ~ 3,
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n-r-1 n-1 11 1 1
L nr(P2nm; 1) = L + L - - -++ ... + ( 1) -.L I > O.

v=l v=r+1 V n v n m - I vI
Set

j(z) = f !:2'3
S

2

3
(z2.

s=l s

Since I P2n(eiB)! ~ f~ sin BIB dB = 2"\, j(z) is analytic in I z I < 1 and con
tinuous in I z I ~ 1. However,

co

L 3n3.r(f; 1) = L L3n3jP2.3S3(z); 1)ls2 > L3n3.r(PZ'3113(Z); 1)ln2 = Cn
8~1

so that lim Lm·(f; 1) = co, which completes the proof of the theorem.

6. RELATION WITH TAYLOR'S EXPANSION

The following theorem establishes a close connection between the poly
nomials Lnr(f; z) based on the roots of unity and the Taylor expansion of
j(z) about the origin. For r = 0, this theorem is due to Walsh [15, p. 153].

THEOREM 5. Ifj(z) is analytic in I z i < P (p > 1) and if Pn-'r-1(Z) is the
polynomial of degree n - I' - 1 taken from the Taylor expansion of fez)
about the origin then Lm.(f; z) - P n-r-l(Z) - 0 uniformly in I z I ~ R < p2
as 11- 00.

Proof We shall need the following representation for Lnr(f; z) .

• '7 1_ f j(t) tr(t n- r - zn-r)
Ln,.(j, -) - ? . '" 1 dt,

_'Trl c t - z t" -

where C is the circle I z I = R, 1 < R < p. Since

jf = j(Oi j ) = ~ f j(t). dt,
2m c t - 0i3

we have

1 f 1 n-1 Oijr+j zn-r - Oi,j{n-'r)

Lnr(j; z) = -2' j(t) . - L --. . . dt.
1Tl C n j~O t - 0i3 Z - (){.3

(6.1)

(6.2)
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1 n-1 exm; Z",-l
~/'1 L --.;--=----;:y = ~'iH - 1 '
~ 0 ~ ~ ~

we can show that for 111 = 1,2,... ,11 we have

In ,= 1, ... , n,

1 n-l cxim I zm-l t rn-l 1 \
'\' - I - ----) (6.3)n.£:'0 (z - cxi)(t - exi) - \ zm - 1 tm - 1 t - z •

Combining (6.2) and (6.3) we have (6.1). Since

1 " jet) z ),,-r
fez) - Pn-r-1(z) = -2" I -.-' (-t dt,7fl .! C l - Z /

we have from (6.1)

1 . jet) zn-r - f'1-j"
Pn-r-l(z) - LnrCf; z) = 27fi Jc t _ z.Un _ 1) tn-i dt.

If I z I = Z, then the right side tends uniformly to zero as (Rn-r + z,,-r)/
Rn-'(R" - 1) approaches zero which occurs if Z < R2 • This completes the
proof of the theorem.

1fj(z) = (z - p)-\ then it is easy to verify that

j(z) - Lnr(f; z) = (zn-rpr - l)/(z - p)(p" - 1).

Also

F(?) - P (z) = 7"-f ID"-"(Z - D)... - n-r-l ... II :

so that

L (f'L,-) - P (z) = (p,,-r - ~>l-r\fpn-r(~ - p)f"n - 1'1nr ,~n-'r-l\ ~),f"'" \t' )6

Lnr(f; z) - Pn-r-l(Z) = (1 - pn-r)j(p2 - p)(pn - 1)

which tends to p-r-l(1 - p)-l as n -+ 00. This shows that the result is the
best possible.

7. MAXIMAL CONVERGENCE FOR FEKETE POINTS

If K is connected and regular (see [15, p. 170]), then K possesses a Green's
function G(x, y) with pole at infinity, In fact the function w = r{>(z) = eG+iH,

where H is conjugate to G in K, maps K conformally onto the exterior of



192 MOTZKIN AND SHARMA

the unit circle y in the w-plane so that points at infinity correspond to each
other. Cp will indicate the locus G(x, y) = log p > 0, or I 1>(z)/ = p > l.

We now establish

THEOREM 6. Let C be a closed bounded point set whose complement K is
connected and regular. Let E = {zi">, ... , z~")} be a set of n points which
maximizes I V,,(Z1 ,..., z,,)/ for points Z1 ,..., z" on C, Vn being the familiar
Vandermonde determinant. If fez) is single-valued and analytic on C, then
L..,.(f; z) converges maximally to fez) on C.

For r = 0, the result is due to Fekete [15, p. 170].

Proof Let p be a number >1 such thatf(z) is single-valued and analytic
inside Cp • Let R be given, 1 < R < p. Then there exist polynomials 7Tn_r _I(Z)
of degree n - r - 1 such that

Hence for Z E C,

If(z) - 7Tn- r-I(Z)! ~ M/R", ZEC. (7.1)

I L"r(f; z) - f(z)1 ~ Ifez) - 7Tn-r-I(Z)! + I L"r(f - 7Tn-r-l ; z)1
M 2rM n

~ R" + Rn L I lko(z)I,
1

where the last inequality follows from (7.1) and Lemma 2.
Since by the definition of {zi.nl}f we have

it follows that I Lm.(f; z) - f(z) \ ~ (M/Rn)(l + n . 2r), so that

!f~ [max' fez) - L"r(f; z)l, z on C]ljn ~ -1- '

which proves the theorem.

8. REAL ABSCISSAS (MEAN SQUARE CONVERGENCE)

We consider now the case where E is a set of n real points Xl' X 2 , ••• , X n

lying in [-1,1] and forming the n-th row of a triangular matrix E. To be
precise we should indicate these by xin

>, ... , x~nl, but for the sake of simplicity,
we avoid the superscripts. Let w(x) ;? 0 be a given weight function on
[-1,1] with f~l w(x) dx = 1 and let {QnCx)}~ denote the sequence of n-th
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degree orthonormal polynomials on [-1, 1] with respect to the weight
function w(x). We shall make the following hypothesis (H) about
Xl , X2 , ... , x" :

(H) Xl' X 2 , ..• , X n are the zeros of the polynomiai

(8.1)

where A" is a constant such that the zeros of w(x) are real and distinct and
lie in [-1, 1].

We have

THEOREM 7. Let the nodes {xiE' satisfy (H). Iff(x) is continuous on [-1, IJ,
then for anY.fixed integer r ;): 0, the polynomials L",,(!; x) have the property

lim II {Ln,.(f; x) - j(xW w(x) dx = O.
n----"Xr -1

Ifw(x) ;): A! > 0, we have

.1

lim J {L"rU; x) - I(x}}" dx = O.
fl-H:J'j -1

(8.2)

(8.3)

Proof We shall prove (8.2) from which (8.3) foHows at once. Let R(x) be
the polynomial which best approximatesf(x) on [-~ 1, lJ in the uniform norm
among all polynomials ofdegree n - r - 1and let rnax~, if(x) - R(x)l = en'
Then en -'" 0 as n ->- 00. Setting get) = J(t) - R(t) and keeping in mind the
linearity of the operator L"r and its reproducing property (Lemma 1), Le.,
L",.(R; x) = R(x). we have

,1

j {L",.(J; x) -- J(xW w(x) dx
• -1

d d

~ 2 I {L",.(j; x) - R(xW w(x) dx + 2 I (j(x) - R(x»2 ;vex) dx
~-l J-l

.1

~ 2en2 + 2 J_) (Lnr(g; x»)2 w(x) dx. (8.4)

Since the fundamental polynomials of Lagrange interpolation hoex) have
the orthogonality property:

j =1= k,
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we have on using (2.17):
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r(Lnr(g; X»2 W(X) dx = r(f cxk,rl"o\2 W(X) dX/TI (A"*)2
-1 -1 1 ~ 0

(8.5)

where I ex",,. I :(;; 2ren . n~-l A" *. Now 1;0 - "'0 vanishes for Xl"'" Xn so
that lZo - 1"0 = w(x) Sn_2(X) whence, from the orthogonality of the Q/s,
we have

J
l d

-1 liow(x) dx = J-1 l"ow(x) dx.

Hence from (8.5) we have

so that (8.4) yields

r(LnrU; x) - f(x»2 w(x) dx :(;; (22r+1 + 2) en2
-1

which proves (8.2).

Remark 1. Theorem 7 holds even when the nodes Xl, ... , x n satisfy
a more general condition, namely, that they be the zeros of the polynomials
w(x) = Qn + AnQn-l + BnQn-2 , Bn :(;; 0, where An' Bn are real constants
such that the zeros of w(x) are real, distinct and lie in [-1, 1J. Also the
function f may be taken to be only R-integrable. The proof of Theorem 7
can be modified as in Erdos-Turin [4] to yield the stronger version.

Remark 2. We have, afortiori, for H{X) > M > 0,

lim f 1I (x) - Lnr(f; x)1 dx= 0.
It...-;),:o J-1

9. STRONG MEAN CONVERGENCE

We shall show that if Xl'"'' X n are the zeros of the Tchebycheffpolynomial
Tn(x) = cos(n arc cos x), then a result stronger than Theorem 7 holds.
More precisely, we shall prove
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THEOREM 8. If the nodes{xi}~ are the zeros ofTr.tx) arid if/ex) is continuous
ill [-1, 1], then

,1

lim I [LnrU; x) - f(x)]-! dx = O.
n---1'~ .J_1

Proo]: Since

(9~ l)

it is enough to prove that

~,~~ t
1

{LnrU; x) - f(X)}l '\/ld~ x2 = o. (9.2)

Proceeding as in the proof of Theorem 7, we may use the polyaomia1 R(x)
of degree n - r - 1 of best approximation to fex) on [-1, 1] 2.I'.d
en = max" i f(x) - RC~)1. It is easy to see that in order to prove (9.2), it lS
sufficient to show that

is bounded as It, --'>- 00. From (2.17) we see that L",.(f; x) = L"o(Ll; x) \vhere
J(Xl:) =, ~(k.r n~-1 ,\*, k = 1,... , n. Then the result of Feldheim [7, p.30)
applies and we have

which completes the proof of (9.2).
It follows by using the reasoning of Erdos and Feldheim [4] that if {xi}i'

are the zeros of T,,(x) and if f(x) is continuous in (-1, 1], then the following
stronger result holds:

lim r1

i LM(f; x) - l(x)!!' dx = 0,
!I-'J:. ... -1

Following Feldheim [8] we shall also prove

p = 1,2,3, .... 19.3)

THEOREM 9. If {Xi)~' are the zeros of U,,(x) (the Tchebycheff polynomials
of second kind) then there exists a ftmction l(x) continuous in [-1, 1] such
that

J
,I

~,~~ -1 {L"rCf; x) - f(x)? dx = +00.

For r = 0, this result is due to Feldheim [9, p. 77].

(9.4)
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Proof We begin with the identity

-n

l: (-l)v--IU,.(Xv) Ivr(x) - Un- r- 1(X),
J.'=l

which follows from the observations that

U () -- . ~-=-r)j)"lT _j' ~ - (-l)v+IU( )
n-I'-1 Xl" -- SIll fl + 1 SIll 11 + 1 - T Xv

and L nlUn- r- 1 ; x) =, U"_1'_1(X), For I' = 0, (9.5) is the known identity

n

l: (-1)"+11vo(x) == Un_lX).
1

• 2 l1-r-l
Smce Un-r-l(X) = Lo U2/c(X) , we have from (9.5):

n n 1

I I (-l)i+/cUr (x;) U.-(X/c) I l;,.(x)h,.(x)dx
i~1 k=1 -1

1 -n-"-1 1

== I U~_H(X) dx = I f U2vCx) d}(;
-1 v=o -1

n-r-l 2 2(n - r)
= I ~>log 3 .

I'~O -t

(9.5)

I X 1= 1,

Consider the function j~(x) which is piecewise linear between the x/s and
satisfies /,,(xv) = (-1)" U,.(xv)/(r + I), j) = 1,... ,11. For x ~ x" and x ~ Xl

letfn(x) be constant. Then Ifn(x) I ,s; 1. Also

I
I 2(n - r)
-1 (Ln,.Un ; X»2 dx > log 3 .

By the Weierstrass approximation theorem there exists a polynomial o/m(X),
of degree m = men), such that

I rPm(x) I :0::;; ~ ,

fI 1 2(n - 1')
(LnrCe?m ; X»2 dx > 2 log - 3 '

-1
n = r + 1, r + 2,....

Set/ex) == "L.:-l Cve?n (x) where C1 = 111 = r + 1 and where the coefficients
Cv and the indices 11v ~re determined as follows:

C . IC" 1 l-mm -- \
1..+1 - 4' ll1axl_ I ",nk Il1nk/(x)1 \'

x <1 .L,.v=l vr '

k = 1,2,...
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and nk+l is the smallest integer for which nk+! > m(nk) + 1. Then it can be
shown, exactly as in [9] and in the earlier paper (5] that j(x) is continuous
and that (9.4) holds.

10. CONCLUDING REMARKS

10.1. By the method of Turan [13] we can show that if {Xi}~ are the zeros
of the Jacobi polynomial p<,;,/3)(x), and if j E C[-1, I], then

.1

lim J (f(x) - Lnr(f; X)2 dx = 0
n-"CI"J -1

if max(ex, (3) < 1/2, and

,1

~~~ J-1 I j(x) - Lnr(f; x)1 dx = 0

if max(ex, (3) < 3/2.
Following the reasoning of Askey [1] it can be proved for the same {Xi};

and ex = f3 ? 1/2 that

(1
~i~, i Ln.,.(f; x) - j(x)[PO - X2)~ dx = 0

• -1
(10.1)

if p < 4(cx + 1)/(2ex + 1), and that if p ~ 4(u: + 1)/(2ex + 1), there exists a
continuous functionj(x) for which (l0.1) fails.

10.2. It is easy to prove a generalization of a result of Fejer [6J: if the
Lebesgue constant An(E) = max",2:; 11Ico(x)! < c1nlJ , 0 < f3 < 1, then
Lnr(f; x) converges uniformly toj(x) in [-1,1] ifjE Lip y, y > /3. Indeed
if Q(x) is the polynomial of degree n - r - 1 approximating best to f{x)
in [-1, 1] in the uniform norm, then

Using the reproducing property of Ln,{f, x) we have, by Lemma 2,

I Lnr(f, x) - j(x) I :(; :LnrU - Q; x)1 + I Q(x) - j(x)!

the assertion follows because y > f3.
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10.3. Using the method of Curtis [2] for Lno and L"l we see, because of
Lemma 1, that for every given matrix E there exists Ii continuous function
IE C[-1, 1] such that Ln;.(f, x) fails to converge uniformly in [-1, 1J.

lOA. We have not been able to prove the analog of Bernstein's result
which asserts that for fo(x) == I x I and for equidistant abscissas, Lno(fo ; x)
converge tofo at no point of [-1, 1] except (-1, 0, 1). It would be interesting
to find sets of nodes for which the operator sequence Lnr(f, x) converges
to I (x) for fixed r ?o 1 in some norm while Lno(f, x) does not. [The converse
cannot occur, because of (2.15).]
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