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0. INTRODUCTION

Let

E, = {x™ ., x", << << "<,
denote the n-th row of a triangular matrix E and let f(x) be defined in [—1, 1].
The polynomial L. (f, E,) = L,(f; x) of degree n — 1 interpolating fon E,
has been, since Newton and Lagrange, the subject of many investigations.
It is a well-known result [9, p. 5] of Faber and Bernstein that

(1) for every matrix E, there exists a continuous function f(x) on
[—1, 1] for which the sequence {L,q/; x}} does not converge uniformly.

However, Fejér [6] has shown that

(2) if the Lebesgue comstant ALE) <en®, 0 <fB <1, then the
polynomials L,.(f; x) converge to f(x), uniformly in [—1, 1], if fe Lip y,
y > B

* Presented in part to the American Mathematical Society on January 25, 1970 (Notices
Amer. Math. Soc. 17 (1970), 257), and at the Conference on Constructive Function
Theory, Varna, Bulgaria, 1970.
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A SEQUENCE OF LINEAR POLYNOMIAL OPERATORS

On the other hand, Erdds and Turédn [5] have shown that

(3) if the points of E, are the zeros of a polynomial @, of degree x,
where {0Q,} is an orthogonal sequence with respect o a weight function
w(x) = M >0, —1 < x << 1, then {L,,(f; x)} converges in the mean square
to f(x), even when f(x) is only R-integrable.

Later Erdds and Feldheim {4] pointed out that

(4) for the zeros of the Tchebycheff polynomial of the first kind an
even stronger result holds:

s J! [Lao(f; ) — fR)P (A — ) dx =0, p=12,..
He® gy

while for the zeros of the Tchebycheff polynomials U, (x) of the second kind
(U {x) = sin{n + 1)f/sin 8, x = cos ) there exists a continuous function f{x)
for which fil (L.o(f; x) — f(x))? dx approaches infinity as » increases.

For other related results see Feldheim [8]. More recently Askey [I] has
shown that if E, consists of the zeros of Q9*(x), the ultraspherical
polynomial, & > — 1/2, then for every continuous f

-1
lim J FLo(f; ) = f@)? (1 — 2 dx = 0 0.1
n—x —1

if p<4&(o+ 1)/Q2a—+1), while if p = 4 + 1)/(2x + 1) there exists a
continuous function f(x) for which (0.1) fails. In the complex domain,
Walsh and Sharma {16] proved

(5) the mean square convergence of L, f; 2) to f(x) on the unit circle,
when £, consists of the n-th roots of unity and f{x) is analytic in |z | < 1
and continuous in | z | << 1.

The object of this paper is to give a scheme for defining a linear polynomial
operator L,(f; x) for any given integer r, 0 <Cr <{n# — 1, which reduces
for r =0 to the Lagrange interpolation polynomial and which for r = |
gives the so-called next-to-interpolatory poilynomial {(cf. Moizkin angd
Sharma [10]). We show that for fixed r, these polynomials share many of
the convergence properties of the Lagrange polynomials including statements
{(D)~(5). We first develop (in Section 1) a general matrix-theoretic rank-
diminishing procedure, a special case of which yields the polynomial opera-
tors L, .

640/5/2-5



178 MOTZKIN AND SHARMA
1. PRELIMINARIES ON MATRICES

1.1. In Section 1, we denote matrices by italic capitals, square matrices
by greek capitals, the rank of A by 4, the transpose by A7, rows by b or b';
Jj means a row consisting of zeros and one 1, as well as the position number
of that 1; correspondingly we use ¢ and & for columns. Then j4, Ak, jAk
are a row, a column and an element of 4; 4 \ Ak means 4 with Ak deleted.

1.2. If the columns of 4 depend on some of their linear combinations:
A = AC - D, then the columns of BA depend on the corresponding linear
combinations: BA = BAC - D. But if, for some column ¢ of C, BAc =20
then the columns of BA depend already on BA(C \ c¢).

1.3. If Ac # 0, BAc == 0 then (BA) < A'. One proof uses 1.2 and the
fact that there exists C with A columns one of which is ¢ such that
(ACYy = 4.

1.4, LemMA, If I'=bAc — Acb then (1) I'dc =0, 2) (I'Ay <A if
A0, 3) bI'=0, (4 b'A =0 implies bT4A =0, (5) I'A = A4 where
4 = bAc — cbA.

Proof. (1) follows from jI'Ac = bdc - jAc — jAcbAc = 0. (2) follows
from (1) and 1.3 if 4c 5= 0; if Ac =0 then I'=0, I'4 = 0. We have
(3) by bI"’ = bAc - b — bAcb, (4) by b'T'A = bAc-b'A — b’ AcbA, (5) by
bAc+ A=A -bAc, where bdc denotes two scalar matrices of possibly
different sizes. (In general, ¢ = A — AF, = A — FA, with scalar A, implies
¢A = A) Note that for bAc 0, I = I/bAc =1 — Acb/bAc and
4’ = 4/bAc have the same properties.

1.5. By assertion (2) of the lemma a general rank diminishing algorithm
can be defined as follows. Choose b and ¢ and replace A by

I'A = A4 = bAc - A — AcbA.

Now choose new b and ¢ and continue. Then 0 is reached after at most A4
steps. But, by (3) and (4), if any & is used again at the next or some later
step, 0 is reached at that step. By (5), the same holds for the reuse of ¢.

The variant I A has the same properties but halts when bAc = 0.

1.6. If the columns of 1 are consecutively chosen as ¢, then by (1) of the
lemma, the first columns in the resulting matrices in turn become and stay 0
and may as well be omitted. This amounts to replacing, at each step, 4 by
A(4 \_A4k) or A(4’ \ A4'k), where k is the first column of 1. We have:

If the columns of A are independent, so are those of
A4\ A'k), 4" =1 —kbA/bAk.
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Proof. Independence of the columns of 4 can be written BA = L.
Denoting the first row of 1 by j there follows (B jB) A4\ 4'k) =
(INHE N4k =1.

As the number of columns of 4 decreases, B loses its first rows.

1.7. For 2 real 4, choose ¢ = k as in 1.6 and b such that jb7 = sgn jdk
for all j; here sgn 0 is arbitrary subject to —1 < sgn 0 < 1. In this case, if
one starts with an invertible 4, at the first step the signs of the highest
order determinants are the same as those for the remaining rows of 41

2. THE POLYNOMIAL ALGORITHM

To the matrix A in Section 1 there correspond the polynomials A4£;
£ = (..., x%, x, 1)T and for given distinct x; , X, ,..., the polynomial eperator

fA = (f’(xl)’f(xi)a) A>

which assigns to every function f the polynomial f4£. In particular, for 4
defined by

. X — X

IAE = ]__[ T

ey X1 N

JAE is the interpolating polynomial to f; A-' is the Vandermondian of
X1 , X3 ,-.. . In fact if we denote by s,, the m-th elementary symmetric function
in the n variables x; , X5 ,..., X, :

=

Sy = Spu(Xg serey Xp) = 3 X, Xyt X, 1<m<n s,=1 (2.1}

Vm

and by 55 the m-th elementary symmetric function in the n — 1 variables
with x, missing; i.e.,

W __ N
Sp == Spa(Xq yeeey Xpeq 5 Xust 5 s Xk i

then we have 4 = (};;), where
Ap = (=1 [Sglz.-/ﬂ (x, — xj)}.
(=

Let £ = {zy,...,2,} be a set of n (distinct) points in the complex plane
and let [;i(z) (j = 1...., n) be the fundamental polynomials of degree n — i
of Lagrange interpolation defined by

o
.
[55]

Sz’

Lize) = Oz, j=1.,n
The Lagrange interpolation operator 71 = L,(f; z) is then given by

Lo(f32) = Y filis,  Where f; = f(z,). a4
1
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If we set
w(z) =[] — 2, = (@)t = 1] @ —z)+#0,
1 k=
then
ljo(z) = wi Zw£2)z, — CO.J‘(Zn_l (.7) n—2 + S(J) n—3 “_) (25)
7

where 53 is given by (2.2). Denote by I} the coefficient of z#~ in J;, ; then
Iy = w; # 0. If wy ..., w, are given positive numbers, set

-1

M@ = Y ho(e)isgn By = 3 (~D* z Wit [y | sO2"F L (2.6)
1
Then the coefficient of z*~* in A(2) is given by
p le [ wik (2.7)

If we now form the polynomials /;(z) of degree # — 2 given by

[3(2) = L@ — G/AH) M@, J = Lo n, 2.8)

then we can define the polynomial operator L,,(f; z) as follows:

Lolfi7) = if,-lﬂ(z). 29)

This process of determining the polynomials /; from the polynomials
can be iterated r times. For simplicity, from here on let w; = - = w, = 1.
If r is a fixed integer, 1 << r << n — 1, suppose we have already formed the
polynomials {/; ,_,}7 of degree n — r. If I*, ; and A} ; denote the coefficient
of z"in I, ; and A,_; , we set

Ii(2) = [;.(2) — a0 Aea(2), (2.10)
Aa(2) = Z l;.r_a(sgn l.';l,{'r—l)_l + Z €l vt > le; =1, (2.11)
jel jely

where I, = {j| I,y # 0} and I, = {j| I},_, = 0}. The linear polynomial
operator

Lo(fs2) = ‘T‘ £l 2.12)

maps functions into polynomials of degree <X #» —r — 1. The possible
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presence of arbitrary €,’s, | ¢; | = 1, brings in an indeterminacy in the aigo-
3

rithm (2.10) which we discuss in some detail in Section 3. However, we
still have

LemMa 1. The linear operators L,(f;z) given by (2.1) are projeciicn
operators onto the space of polynomials of degree <. n — r — 1. Aiso

n

Y Iz =0, m=0,1,..n—7r—2, " g

1 {L.i:j

= 1, m=n—r—1I.
In particular, we have

n
Yl = L. (2.14)
L

Proof. Forr =0, the lemma is well known as a reproducing property of
Lagrange interpolation which is exact for polynomials of degree < n — 1.
This gives (2.13) for r == 0. The proof is now completed by induction on r,
using (2.13) and (2.10).

The above lemma is independent of the arbitrary ¢’s, | €, | = 1, which
occurs in /,, when I}, ; vanishes. Formula (2.13) guarantees that the /%._,
{(j=20,1,...,# — 1) can not all vanish. We now obtain an upper bound on
| L..{f; z)| independent of all ¢,’s that may occur in (2.12). We have

LemMa 2. If max, | f;| = M, then for any given v, 1 <r <{n— 1, we
have

/ﬂ
2
P
Ay

S

Lok D) < 7MY | (@),

Proof. Denote by I,_; the set of indices for which 7, _, = 0 and by /.,
the complementary set. Then using (2.10) we have

’\j:-anr(f; 7) = Zfi(li,r-—l ‘;k~1 - ;‘jr—l)tr—l)
1

= Y il ¥ Vel = e Y haa(sen B,
=1 .

iel,_, jeh_y
_l;‘ir-—l Z 61'15,7'—1%
je"r——l
= ¥ Leawa(H 4+ Y LaoaBia(),
jelpy jely

640/5/2-5%



182 MOTZKIN AND SHARMA

where
a,1(f) = Z l?jr—l{f (sgn !;’:'r——l)—l — fi(sgn l;fr—l)—l}a Jjel 4,
iel,_;
» (2.16)
ﬁj,l(f) = Z lz?‘fr——l{fj(Sgn lz?’,(r—l)—l '_f;fj}a ] € Jr——l .
ie,r—l
Then
max{| a; (), | B ()} <2M z e | = 2MAY, .
kel

Iy ={i| I} 50}, Joa={j| [}y = 0} and if /@ denotes a function
such that

W= (O = (), jel,
= B:i.l(f)} jG Jr—l 5

then it is easy to see that

NNGLfi2)= Y Lol f) + Y LosBia(fP),
¥

JEL

r—2 IS

r—2

where a; o(f kl’), B;.o(fV) are defined in a way analogous to (2.16). Also
max(| o, o(f ), | Bra(f ™)) < ZMALAL, .

Repeating the above process r times, we finally have

r—1 n
II /\k*Lnr(f; z) = Z G, plrg (2.17)
1] 1

where | op, | < ZTM(]_[(:*1 A:¥). Taking absolute values in (2.17) completes

the proof.

3. SpecIAL SETS £ AND INDETERMINACY

In general, it is very difficult to compute the numbers [, ; and A¥; . For
special E, it might also happen that for some r and j, I},_; = 0 but from (2.13)
it is clear that [;%,_, can not vanish for all j and hence A} ; can never be zero.
However, as explained in Section 2, the vanishing of /., brings in an
indeterminacy in the linear operators.

If 55, AF* denote the coefficient of z*2 in I, and A, , respectively, then
1% = 0 is equivalent to AJXjF = AF*% , namely, 10 A*(x, — X x;) = AFY,
ie., x, = (Af*/A*) + X x; . Hence only one I}; can vanish (also for any
given positive weights w;).
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With all w; = 1in (2.7) and (2.8), the condition /}; = O becomes

n

2 (o —z)u; =0, Uj i/F RN 3.5

=1

whence z, = ¥ za,/3 u; . As an average, z, is in the relative interior of
the convex hull of the z; .

If z, = 0 and if for some ¢ = 1, | e| = 1, z; € E entails z;c € £, then by
symmetry ¥ zay; = 0, hence [ = 0.

When E has only 3 or 4 points, we have the following

THEOREM 1. If n==3, [ = 0 if and oniy if z, lies between z, and z,
For n=4, I} =0 if and only if z, is the orthocenier of the acute-angled
trigngle {z, , 25 , Z,).

7

Proof. For n==3, the result follows from (3.1} which reduces to
sgn(z, — z,) -+ sgn{z; — z5) = O.
For n = 4, (3.1) becomes

2

Pz — maisgnlzy — 2p) -+ | 2y — Zo | 8g0(zy — zg) + 1 2o — z3 sgnfz, — 2,3 = 0.

P
(J.;

Equation (3.2) means that 3 vectors of lengths {z, — z3{, |25 — 21 |,
| z4 — 2, |, form a triangle. But the lengths of the sides of a triangle determine
the angles except for factors -+1. Hence but for a rotation there are only
two possible positions:

{2y — zgisgn(zy — 25) + |25 — zy [ sgnfzs — z) + |z, — =

or

sgnfzy — z5)  sgn(z; — zy) © sgnlzy — zy)

| Zp ~— 24| | 23 — 24| +“ [z — 53] ) (3

From these we see that sgn(z; — z,), sgn(z, — z3), sgn(z, — z,) differ {rom
sgn{z, — zg), sgn(zy — z,), sgnfzy — z,) or their reciprocals only by a constant
rotation factor. Therefore we have cither

sgi(zy — z4) _ sgn(z; — zy) — sgn(zy; — 73)
Sg(zy — Z3) sgn{zs — z4) sgn{z, — 73)

S

W
i

or
sgn(z, — 2,) sg0(z, — 75) = SEn(z1 — 7o) sgn(z, — 2,

= sgnlz; — 73) sgnlz; — z2). .

)
Ke))
-’
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Now (3.6) can not hold; for if it did then the three vectors (z; — z,)(z. — z3),
(zy — 22)(zg — zy), (2, — z3)(zy — z,) would have the same argument which
is impossible since their sum is zero, and z, , z, , z5 , z, are distinct.

If z,, z3, z; are colinear and (3.5) holds, then (3.6) also holds. Hence
Zy , Zy 5 Z4 are not colinear.

In case (3.5) holds, even if we allow, instead of equality, equality with
-+ factor, i.e.,

sgn(z; — z,) sgn(z; — z,) sgn(z; — z3)
= = o= 1T R 3.7
sgn(z, — z3) sgn(zz — z;) 7 sgn(zy — zy) 3-7)

it means that if we take lines through z, z, , z, parallel to the lines z,z,,
2,75, ZsZ; » Tespectively, and turn them about the same angle, then they
should be concurrent at z; . Now the point of intersection of any two of
these lines while they are turning moves on a circle which is of the same
size as the circumcircle of the triangle (z,, z; , z,). These three circles meet
at the orthocenter because the angle at the orthocenter and that at the vertex
are supplementary. Thus the orthocenter is the only point z; fulfilling (3.7).
But it is easy to see that (3.5) will be fulfilled if and only if z, is in the interior
of the triangle (z, , z3 , z,). This completes the proof of the theorem for n = 4.

Remark 1. 1If n = 4 and the points x; > x, > x5 > x, are real then the
numbers sgn I, , sgnlf., sgnlf, sgnlf are 1, —1, 1, —1 for k=0;
1, —1, —1,1fork =1;and 1,1, —1, —1 for k = 2.

Remark 2. The set of all sequences (zy ,..., z,) for which 4 =0 has
dimension 5 for n = 3, but probably 2z — 2 for n > 3. To prove it is
=2n—2,let z; =0, z; = & ("1 = 1), j > 1. Then an arbitrary small
variation of the z;, j > 1, entails (if we want 4; = 0) a small variation of
z, (for each j the Jacobian is 5= 0, so that the inverse function theorem can be
applied).

We give now a second proof of the fact that the dimension mentioned
above is = 21 — 2 for n > 3. From (3.1) we see that [} = 0 if and only if

0 = [sgn(z, — zy) [Zg — z; || 4 .

peotes =20/ T1, 122 = =
Hence if z,,..., z, are real, z, <<+ <<z,, and y; = Il zpi21 | 2 — 25 |,
then /f; = 0 will hold if and only if z; < z; < z3.,; where

et T Ve =Vra A Va G8)

Since for n >3, 3 > Vs, Yoy > Vu>we have 3k <n—2. Forn=3
we get z, << z; << zy ; for n = 4 nonexistence of z; ; for n > 5, z; exists only
for special positions of z, ...., z, (e.g., symmetry for odd #), and then z, can
be chosen on an interval. For n > 5, any k, 3 <k <n — 2, can occur;
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indeed, for small z; — z, the left member is larger in the equation that is
obtained from (3.8) by multiplying by the least common denominator,
while for small z,, — z,_, the right member is larger, hence by continuity
they can be equal. For n = 3, we have k = 3 and the condition (3.8} reduces
10 z3 — Zy = Zzz — Z3 , 1.€., Symmetry.

To find a root of F(z;) =0 for general complex z,.,..,z,. where
F(z)) = 35 ¥ sgn(zi — z,), note that for a fixed large | z, |, F{(z;) stays close
to a circle about 0. If we contract the | z; |-circle the image must at sometime
pass through 0 ualess 0 lies within, or on, one of the circles F{z;) with sgn G
arbitrary of absolute value 1. (Note that for & = 2,..., n, F(z;) = 4; + 3.2¥,
— 7 < <, with A, = Y5, 22 3, 580 (2, — 23), is a circle with centre A,
and radius y,). For example, for # = 4 this occurs (as seen by a simple
computation) if and only if the triangle {z,,z;,z;) has an angle &,
a/2 < ¢ K mat z,. For z, = 1 (' = 1), 0 does not lie in, or on, these
circles; for if, for instance, 0 = y,o + 3 vpsgnfl — "3, la | < {, then
(since all y; are equal)

n—2

= — 3 sgn(l — ) = —cotw/(2n —2) < —1. >3
1

Hence F(z;) = 0 for some z, ; in fact, for z; = 0. For an arbitrary small
change of the z; , the circles still do not include 0, hence F(z,) = 0 still has
a root, which proves that the above-mentioned dimension is == 2n — 2.

4. NEXT-TO-INTERPOLATORY POLYNOMIALS

Let {7, denote the class of polynomials of degree < k, let 7(z) denote the
nexi-to-interpolatory polynomial of degree » — 2 which minimizes the norm
max{w; | f; — #(z;)|} among all polynomials of degree < # — 2, where the w,’s
are given positive constants. We now prove

THEOREM 2.  The polynomials Ly (f: z) of (2.9} coincide with the next-io-
interpolatory polynomials ©(z). Moreover if f is not a polynomial of degree
< 1 — 2, then the following statements are eguivalent:

LS 2) = 7(2) = fAL (1 N\ k) (4.1)

(in the notation of Sections 1 and 2), where k = (1,0, 0,..)7 and 5 is given
by b7 = w;t(sgn jAk)1.
wilfi — L[ 2| = | By 1/AS, is independent of 7,

Ji— L'rll(f; z) _
B, =

N
b3
£

arg arg w'(z;), is independent of f;
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1 &
Lu(f;2) = —)l;*—; W;cl/lk(f 5 2) | l;:o L 4.3)

where A(f; z) is the polynomial interpolating f in all points of E except zy, ;
and By = Y filX + 0.

Proof. We begin with the explicit formula for 7(z) given by Motzkin
and Walsh [11]. They show that

n %k
~1 LY — i o Lt
ByH{Lyy(f; 2) — 7(2)} w(z)};z —z M = Wy Ao

Hence

7(2) = Y, filio — Bow(2) ), ;_EL;
1 L

3

n A Z n
= filhy — DS g
1 ’\0 1

= 3 fila@),

which proves the first part of (4.1). The second part is a reformulation of
(2.9) in the notation of Section 1.

Equation (4.2) is a rewording of the equations which characterize 7(z)
[11, p. 84]; corresponding results are given there for general families and
weights. The second part of (4.2) can also be rewritten as

{Ji — Lmlfs 22)
arg = (2)
In this form the result (4.2) is equivalent to the conditions of Videnskii [3, 14].

In order to prove (4.3) we observe that from [10, Theorem 2] it follows
(after a change of notation) that

(2) = XI—— S WA | IS ),

g = arg B, is independent of i.

(4.4
L) =S her  Aa= ] 222

hik 217 Fn

We shall show that 7(z) given by (4.4) and L,;(f; 2) given by (2.9) and (2.8)
are equal. Now (4.4) implies that

@) = Y wit | Bl Y S Y wit 1 B
k=1 j=1

k=1

= Y 5 YWt e d /S wit 1 -
j=1 k=1 1
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It is therefore enough to show that At — Dide = Sop wit | L | Asp oF
equivalently that

0

n
Z we'llo — M) [ o | = By Z Wit/ (sgn 75) {4.5)
1

o
ot

since A,* = Y5 wit | I |. We shall indeed show that
(B0 — A5.x) o = Lo
which implies (4.5). Now it is easy to see that
M= (& = 2/ — 2 b »

so that [, — A5 = ((z — z)[{z — z)) Iy . Sinee [y = e(z)/(z — z;} and
Lo = Liuw(2)/(z — z;), we have proved (4.6). This completes the proo

Theorem 2.

~
'S
&
=N
e’

<

5. MEan SQuarRe CONVERGENCE rOR Rootrs o Uwity

Let E={1, «,..., 2"} be the 1 roots of uaity with 2" = 1. Then
by = (" — D)z — o) - oc”/ﬂ, j=0,1,.,n~ 1. Hence
= * 172 2" — 1 -1
A(z) = z Lel(sgn liy) = by Z =z
1 L o’
0 that Ay* = 1. Then from (2.8) we have
Z* A N a:ii'r;—l)
In(z) = Li(z) — Aofz) = T PR

Proceeding as before, we obtain, for s =0, 1,..., 7 — 1,
ins(f; Z) = (‘x85+j/12) (7n P piin c‘\ (Z - ’:'“']}'
. PR noo. P
In this case because of the property 3 o™ =0, m = 1,...,n — |, we have
n—i

admf = zm, m=201,..,1n—5—1,
Js 3

j=0

= {, m=n—8..,1n— 1.

We now state

TaroreMm 3. Let f{(z) be analytic in D: |z | < 1, continuous in D -+ C,
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(C:|z| =1). Then the sequence of polynomials L, (f; z) with E as the n-th
roots of unity, converges to f(z) in the Ly,-norm. Consequenily, for fixed r,

lim Lo, (f; 2) = £(2) ¢.2)

uniformly in |z | < R < 1.

Proof. Letf(z) — t,_,_3(2) = 8(z), e, = max]| 8(z)|, z € C], where ¢,,_,_1(2)
is the polynomial of degree n — r — 1 of best approximation to f(z) on C.
Then

| 1 Lulfs) = f@F1dz | <2 ] [8@E1dz|+2 [ | L300 2)P 1 dz
C C c
<262 2m 42 [ | Lo8@); 2 | dz |-
C
Since [ 22" | dz | = 278, , 8ym being the Kronecker delta, we have

2 1 n—r—1 i
f 1,@) (2) | dz | = _r.g_ Um0 "
¢ h=0

so that

l‘ l ‘,(I’l——r), if j=k’
I,.’j == ljr(Z) l"r(z) I dZ l <
F J c ¥ 2m r+1, j#k

n?
Hence
A n—1 n-1 N
J L@@ DR 1dz ] < 3 X 18D 5ED) S
i=0 k=0

nr — 1) 2a(r + 1)

n?

2ar
< ‘172" ena(n - I‘) + enz

< 2u(r 4 D ey

Since e, — 0 as n — oo, the theorem is proved.
To prove (5.2) one has only to observe that for |z | < R < 1,

Lo(fi =10 ,

t—2z

Lofs D) — 1@ =5 [

27ri
Remark. For r = 0, Theorem 3 reduces to a theorem of Walsh and
Sharma [16].
The following theorem is an analogue of a theorem of Fejér (7], see also
[12], p. 92) and is proved by the same method.
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THEOREM 4. If E denotes the set of n-th roots of —1, and L,{f; z) the
polynomials defined by the algorithm given by (2.10)~(2.12), then there exisis
a function f(z) analytic in |z | <1 and continuous in |z | <1 for whick

lim L, (f; 1) = +cc. (5.3)
n>w

Proof. If By = e®Vnin [ = ],.,n, are the n-th roots of —1, we
consider the polynomial

z Z“‘l Zn+1 Zn+2 =20
cee L .
— + A —_— — — —_—,

. i
P2nl\z>:71+ n—1

Then

’

N 1 i . : .
PoulBe) = (1 - '”—:—1—) Br + b + m) B+ o (-r-*—i—*i* 1) 3
so that L, {f; z) = Z:?lI Py(Br) ha(2), where

L(2) = — glw_

n(z — By
Hence
] 1 /1r I a5
Lnr(Pzn;Z):(l'}'i1_1)z+(.—i—r—n-—_—-——>z~+.--
1 E‘ w—r—1
(Il-—l'~—1+,x'—;l—1;2
and
. 1 o
Lnr(P2nal):(1—7—5-%—“-—‘——-—_!‘——])
—1‘(1 +"‘-‘~———1 )>Clogn
r+1 " n—1 ’

C being a fixed constant independent of #. Similarly, we can verify that if m
is an odd integer,

L (P .Z):n.—i’l 7v[,’_1______i__4_-..+______1_..____\
wr\S 2nm ~ T (v n-t+v n(m——l)+v}
1 1 H
+(n——v"2nav+m+ nm—v”’

Then for 2m <n —r,

Lnr(P‘zm 5 1) = sz(l) == 0,
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and for m > 3,

n—r—1 n—1

L-nr(P2mn s Z + Z

r=1 y=r41

v n—i—v+m+ .v>0'

Set

o=y 5@

s=1 5

Since | Py,(e®)] < [osin 8/6 df = 2], f(z) is analytic in | z| < 1 and con-
tinuous in | z | < 1. However,

Ly (f3 1) = Z Ly (Py.55%(2); 1)/5% > Ly (P, gn*(2); D[n* = Cn

so that Tim L, (f; 1) = oo, which completes the proof of the theorem.

6. RELATION WITH TAYLOR’S EXPANSION

The following theorem establishes a close connection between the poly-
nomials L, (f; z) based on the roots of unity and the Taylor expansion of
Jf(z) about the origin. For r = 0, this theorem is due to Walsh [15, p. 153].

THEOREM 5. If f(2) is analytic in | z| <p (p > 1) and if P,_._4(2) is the
polynomial of degree n — r — 1 taken from the Taylor expansion of f(z)
about the origin then L, (f;z) — Pu_r_1(2) =0 uniformly in |z} < R < p?
as n— 0.

Proof. We shall need the following representation for L, (f; z).

1 fo) v =z L (6.1)

?Tfl Ct——z ”'—"1

n;(.f: “) =

where Cis thecircle | z | = R, 1 << R < p. Since

L] L9

2w P — o

fi=1) = 5=

we have

1 n—1 ol gt od(n—r)

Lifid =g | 03 % 75 220 6)

¥
=0 &
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Using the identities

Lt — o)z — o) = (1 = D[z — o) — (Ut — )],
n-1 m—1
% 7o = Zr,i — 1 5 m = j,..., H,

.alv-'

we can show that for m = 1, 2,..., # we have

1 n—3 aim ¢ zm—l lm-l i \

. {
n Z (z — ot — o) (zm~1 T gy | (&.3)

Combining (6.2) and (6.3) we have (6.1). Since

@) = Pors@) = 5 | 2 (2)7 g

27ancl—“.é

we have from (6.1)

) ) 1 » f(z) A R Ly
Pn‘r—l(z) - Lnr(f: Z) = 5;_; JC f— 7 ’ {’tn . 1) $n—r dt.

If | z| = Z, then the right side tends uniformly to zerc as (R* - Zr—7)/
R*"(R® — 1) approaches zero which occurs if Z < R This completes the
proof of the theorem.

If f(z) = (z — p)™, then it is easy to verify that

f@) — Lol fy 2) = (2"7p" — DIz — p)p™ — 1).
Also
f(@) — Py iz) = z77)p""(z — p)
so that
Lolf;2) — Poyal2) = (o™ — 270 p" (2 — p)p™ —

2

For z = p?,
L. {#; Z) — Py g 2‘ =1 - Pn—r}/(pz - 0)('011 — 1)

which tends to p~"¥1 — p)~' as n — 0. This shows that the result is the
best possible.

7. MAXIMAL CONVERGENCE FOR FEKETE POINTS
If K is connected and regular (see [15, p. 170]), then K possesses a Green’s

function G(x, y) with pole at infinity. In fact the function @ = ¢(z) = e+,
where H is conjugate to G in K, maps K conformally onto the exterior of



192 MOTZKIN AND SHARMA

the unit circle y in the w-plane so that points at infinity correspond to each
other. C, will indicate the locus G(x, y) = logp >0, or | ¢(2)] = p > 1.
We now establish

THEOREM 6., Let C be a closed bounded point set whose complement K is
connected and regular. Let E = {z{",...,z"} be a set of n points which
maximizes | Vi(zy ,..., Z,)| for points zy ,..., z,, on C, V, being the familiar
Vandermonde determinant. If f(z) is single-valued and analytic on C, then
L,.(f; z) converges maximally to f(z) on C.

For r = 0, the result is due to Fekete [15, p. 170].

Proof. Let p be a number >1 such that f(z) is single-valued and analytic
inside C, . Let R be given, | < R <C p. Then there exist polynomials m,_,_4(z)
of degree n — r — 1 such that

[f(2) — Tnralz)] < M/R*, zeC. (7.1)
Hence for z € C,

i Lnr(f z) — f(z)i < If(Z) - 77'15-—1'—1(2){ + ‘ Lnr(f — Tp—r—15 Z)!

M 2MZ
< R + "R‘n—z | L2,

1

where the last inequality follows from (7.1) and Lemma 2.

n,

Since by the definition of {z{}} we have
| ho(D)] = | @@z — 27) 0’ (&) < 1,

it follows that | L,,(f; z) — f(2)! < (M/R?X1 4 n - 27), so that

y@o [max [f(Z) - Lnr(f; Z)l, Z 0on C]l/n < _‘IR_ ,

which proves the theorem.

8. REeAL ABscrssas (MEAN SQUARE CONVERGENCE)

We consider now the case where E is a set of » real points x; , X, ,..., X,
lying in [—1, 1] and forming the n-th row of a triangular matrix E. To be
precise we should indicate these by x{™,..., x{™, but for the sake of simplicity,
we avoid the superscripts. Let w(x) = 0 be a given weight function on
[—1, 1] with _ﬁl w(x) dx = 1 and let {Q,(x)}y denote the sequence of n-th
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degree orthonormal polynomials on [—1, 1] with respect to the weight
function w{(x). We shall make the following hypothesis (H} aboui
Xy Xz aeoes X 2

(H) Xy, Xg ..., X, are the zeros of the polynomial
w(x) = Qn(x) + A,Qr(x) 8.1}
where 4, is a constant such that the zeros of w{x) are real and distinct and

liein T—1, 13.
We have

THEOREM 7. Let the nodes{x;}7 satisfy (H). If f(x) is continuous on {—1, 1],
then for any fixed integer v = 0, the polynomials L,{f, x} have the properiy

1
lim f (Lo(fs %) — FOOR w(x) dx = 0. (8.2)
n->%x _1
Ifw(xy = M >0, we have
-1
lim J {Lof; ) — f)Pdx = 0. (8.3
n-o J g

Proof.  We shall prove (8.2) from which (8.3) follows at once. Let R{x) be
the polynomial which best approximates f{x) on [—1, 1]in the uniform norm
among all polynomials of degreen — r — 1 andiet max, | f{x) — R(x)| = ¢,.
Then ¢,, — 0 as n — oo, Setting g(t) = f(#) — R(r) and keeping in mind the
linearity of the operator L,, and its reproducing property (Lemma 1), ie.,
L,A{R; x) = R(x). we have

I AL ) — FE (o) s

<2 [ (L) — ROV s +2 [ () — RO (o)

A

N
2e,r + 2 J (Ln(g; X))* w(x) dx. (8.4)

Since the fundamental polynomials of Lagrange interpolation /{x) have
the orthogonality property:

[ 1) ) wo dx =0, j#F,
-1
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we have on using (2.17):

J‘; (Larg; )2 w(x) dx = fl_l (é (xk’,r]ko)z w(x) dx/ﬁ (A2
(8.5)

r—1

= 2 (o) J—1—1 [3(x) w(x) dx / IT 3

where | oy | < 27, -Hg_l A*. Now Iy — I, vanishes for x; ,..., X, s0
that 22y — lio = w(x) S,—_o(x) whence, from the orthogonality of the Q,’s,
we have

1 5 Al
f Bow(x) d = | lgw() dx.
-1 -1
Hence from (8.5) we have

Al i 7
| @l 007 wix) dx < 27722 f Y Jeo(x) - w(x) dx = 27 - e,?
-1 -1 1

so that (8.4) yields
[ @aulfs 0 = 70w dr < @741 4 2) 2
-1

which proves (8.2).

Remark 1. Theorem 7 holds even when the nodes xi,..., x, satisfy
a more general condition, namely, that they be the zeros of the polynomials
w(x) =0, + A4,0. 4 + B.Q._,, B, <0, where 4,,, B, are real constants
such that the zeros of w(x) are real, distinct and lie in [—1, 1]. Also the
fupction f may be taken to be only R-integrable. The proof of Theorem 7
can be modified as in Erdos-Turan [4] to yield the stronger version.

Remark 2. We have, a fortiori, for w(x) > M >0,

-1

H—>0

9. STRONG MEAN CONVERGENCE

We shall show that if x; ,..., x,, are the zeros of the Tchebycheff polynomial
T,(x) = cos(n arc cos x), then a result stronger than Theorem 7 holds.
More precisely, we shall prove
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TuroreM 8.  If the nodes {x,\} are the zevos of T,{(x) and if { (x) is continuous
in1—1, 1], then

lim i ALa(fs x) = S} dx = 0. 9.9
Proojf. Since
. 1 i L rr dx
0 < | {Lalfsx) = fOOPdx < | {Lalfs ®) = JOOF ey
-1 YVl o— Xx=
it is enough to prove that

dx .
tim | ALl fs ) = f ey = 0. ©2)

Proceeding as in the proof of Theorem 7, we may use the polynomial Rix}
of degree #n —r — 1 of best approximation to f{x) on [—1, 31 "rr‘
e, = max, | f(x) — R(x)|. 1t is easy to see that in order to prove (9.2), it 5
sufficient to show that

|
|

L . ix
[ (L (g(); )} db = j {LaAg(t); )} —rmmes
M v - X
is bounded as » — oo, From (2.17) we see that L, (f; x} = L,4{4; ) where
40 = oy Tﬂo ,J.-*, k= 1,...,n. Then the result of Feldheim 17, p. 30]
apphes and we have

[ (L0 3 68 < (€ + G+ 2m) 24 - e,
(1)

which completes the proof of (9.2).

It follows by using the reasoning of Erdds and Feldheim [4] that if {x,}}
are the zeros of T,(x) and if f{x) is continuous in T—1, 11, then the following
stronger result holds:

1
lim { VLo (fi ) — 0P dx =0, p=123... (2.3)
-1

Following Feldheim {8] we shall also prove

THEOREM 9. If {x;)] are the zeros of U (x) (the Tchebycheff polynomials
of second kind)y then there exists a function f{x) continucus in {—1, 1] such
that
lim j (Lo f; %) — fGO}2 dx = 400,

i adad

,,.
=
N

S

For r = 0, this resuit is due to Feldheim [9, p. 771
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Proof. 'We begin with the identity

Y (=1 UL LX) = Upopg(), 9.5
=1
which follows from the observations that
Up—ra(x,) = sin <”n‘+’)1”" Jsin T = (1P x)

and L, (U, ; x) = U,_,_(x). For r = 0, (9.5) is the known identity

3 (= D"*U(x) = Uy 4(x).

Since U2, ,(x) = 3o Uy(x), we have from (9.5):
n n 1

X (1) U [ ) Bl) dx
=, -1

1 k=1

n—r—1

1 1
- f . Ui, ()dc= Y f | Un()dx

v=0

Il 2n—r)

= 20 31> o83

Consider the function f,(x) which is piecewise linear between the x;’s and
satisfies fo.(x,) = (— 1P ULx)/(r + 1), v=1,...,n For x > x, and x < x;
let f,(x) be constant. Then | £,(x)] < 1. Also

[l 200 x> tog 2020

By the Weierstrass approximation theorem there exists a polynomial ¢,(x),
of degree m = m(n), such that

3
|¢m(x)1<§’ ix'::]"

1 —
f (Lol(Pp 3 X)) dx > :,Izlogz(‘n—f)— ) n=r-+1, r+2,...
~1

Set f(x) =3, C,¢n (x) where C; = n; = r -+ 1 and where the coeflicients
C, and the indices n, are determined as follows:
Cy 1

=1, 2,...
d 0 ey ey Fe b2

C]H—l = Il'lln
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and n,., is the smallest integer for which n,,; > m(n;) + 1. Then it can be
shown, exactly as in [9] and in the earlier paper [5] that f(x) is continuous
and that (9.4) holds.

10. CONCLUDING REMARKS

10.1. By the method of Turdn [13] we can show that if {x;}7 are the zeros
of the Jacobi polynomial P #\(x), and if f& C[—1, 1], then

lim [ (F69) — Lo 0" dix = 0

if max(e, B) < 1/2, and

tim [ 1£() — La(fs 9] dx = 0

if max{a, B) < 3/2.
Following the reasoning of Askey [1] it can be proved for the same {x;}}
and o = B = 1/2 that

lim [ (Lo ¥) — FOOIPL — xtyedx = 0 (10.1)

if p <d(a 4+ 1)/(2x + 1), and that il p = 4(x -+ 1}/(2e + 1), there exists a
continuous function f(x) for which (10.1) fails.

10.2. It is easy to prove a generalization of a result of Feiér [6]: if the
Lebesgue constant A (E) = max, Yy | L) < cwf, 0 < B < 1, then
L,,(f; x) converges uniformly to f(x) in [—1, 1} if fe Lipy, y > 5. Indeed
if Q(x) is the polynomial of degree n — r — | approximating best to f{x)
in [—1, 1] in the uniform norm, then

[FG) — Q) < e
Using the reproducing property of L,.{f, x) we have, by Lemma 2,
| Luy(f> %) — fON <V Loolf — @5 0 + 1 Q() — F(3)

n

Ko™+ 27 e Z | Do)

i

< oY - P

the assertion follows because y > 8.
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10.3. Using the method of Curtis [2] for L,, and L,; we see, because of

Lemma 1, that for every given matrix E there exists 4 continuous function
fe C[—1, 1] such that L, (/, x) fails to converge uniformly in [—1, 1].

10.4. We have not been able to prove the analog of Bernstein’s result

which asserts that for fy(x) = | x | and for equidistant abscissas, L.q(f; ; x)
converge to f; at no point of [—1, 1] except (—1, 0, 1). It would be interesting
to find sets of nodes for which the operator sequence L, (f, x) converges
to f(x) for fixed r > 1 in some norm while L, f, x) does not. [The converse
cannot occur, because of (2.15).]

10.

1.

12.

13.

14.

15.

16.

REFERENCES

. R. Askey, Mean convergence of orthogonal series and Lagrange interpolation,

Acta Math. Hung., to appear.

. P. Curms, Convergence of approximating polynomials, Proc. Amer. Math. Soc.

13 (1962), 385-387.

. CH. ). DE LA VALLEE PoussiN, Sur les polynomes d’approximation a une variable

complexe, Bull. Acad. Roy. Belg. Sci. 3 (1911), 199-211.

. P. ErDnOs AnD E. FeLpHEmM, Sur le mode de convergence pour l'interpolation de

Lagrange, C. R. H. Acad. Sci. 203 (1936), 913-915.

. P. Erp0s anD P. TURAN, On interpolation I, Ann. of Math. 38 (1937), 142-155.
. L. FEXErR, Lagrangesche interpolation und die zugehorigen konjugierten Punkte,

Math. Ann. 106 (1932), 1-55.

. L. Fexér, Interpolation und konforme Abbildung, Nachr. Ges, Wiss. Géttingen (1918),

319-331.

. E. FELpuem, Quelques recherches sur Pinterpolation de Lagrange et d’Hermite par

la méthode du développement des fonctions fondamentales, Math. Z. 44 (1938),
55-84.

. E. FeLpHem, Théorie de la convergence de procédés d’interpolation et de quadrature

mécanique, Mém. Sci. Math. Acad. Sci. 95 (1939), 1-90.

T. S. MoTzKIN AND A. SHARMA, Next-to-interpolatory approximation on sets with
multiplicities, Canad. J. Math. 18 (1966), 1196-1211.

T. S. MorzkiN AND J. L. WaLsH, On the derivative of a polynomial and Chebyshev
approximation, Proc. Amer. Math. Soc. 4 (1953), 76-87.

V. L. SMmrNaov AND N. A. LEBEDEvV, “Functions of a Complex Variable: Constructive
Theory,” M.LT. Press, Cambridge, MA., 1968.

P. TurAN, On some problems in the theory of mechanical quadrature, Mathematica
(Cluyj) 8 (1966), 181-192.

V. S. VipEnsk1, On uniform approximation in the complex plane (Russian). Uspehi
Mat. Nauk. 11 (1956), 5(71), 169-175.

J. L. WaLsH, “Interpolation and approximation by rational Functions in the Complex
domain,” Amer. Math. Soc. Collog. Pub. Vol. 20, 3rd ed., American Mathematical
Society, Providence, RI., 1959,

J. L. WALSH AND A. SHARMA, Least squares and interpolation in roots of unity, Pacific
J. Math. 14 (1964), 727-730.



